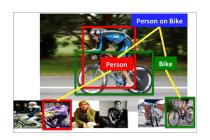
# Beyond Classic Search CS 470 Introduction To Artificial Intelligence

Daqing Yi

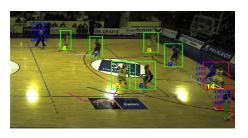
Department of Computer Science Brigham Young University

# Outline




### Rational agent

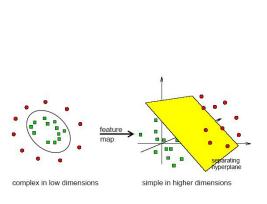



- Utility-based problem
- Optimization
  - $arg \max_{x \in X} f(x)$
  - $\operatorname{arg\,min}_{x \in X} f(x)$
- Find the  $x^*$  in X



#### **Computer vision**



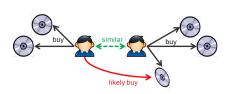

Object recognition



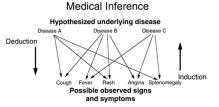
Object tracking



#### Machine learning




Classification


Regression



#### Machine inference



Item recommendation



Medical inference

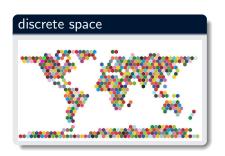


#### Machine planning



Supply chain optimization






Sensor placement

### Problem space



#### search space

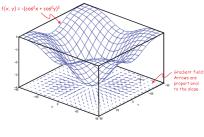




### Optimization



- convex optimization
- nonconvex optimization
- math approach
- numerical approach
- stochastic approach


#### Gradient

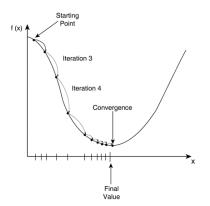


- derivative of a function in several dimensions
- the slope of the tangent of the graph of the function



1D gradient




2D gradient

### Hill-climbing search



**steepest-ascent** a loop that continually moves in the direction of increasing value

- greedy
- local optimal
- step length



### Hill-climbing search



#### The problem of local optimal How to tweak

- ullet random step o Stochastic hill climbing
- ullet try till you find a better one o First-choice hill climbing
- ullet get out of local optima o Random-restart hill climbing

### Simulated annealing



 $\begin{tabular}{ll} \textbf{Gradient descent} in nonconvex optimization \\ adaptive step length + stochastic \\ \end{tabular}$ 

- energy + temperature
- schedule

### Simulated annealing



#### nature phenomenon

- heating a solid and then cooling it slowly
- nearly global minimum energy
- by small random displacement
- ullet lower  $\longrightarrow$  accept
- ullet higher  $\longrightarrow$  accept with Boltzmann probability

### Simulated annealing



#### **Boltzmann probability**

$$P = \exp\left(\frac{-\delta E}{K_b T}\right)$$

 $K_b$  - Boltzmann constant T - current temperature

- lower temperature → high probability
- ullet higher temperature  $\longrightarrow$  low probability

#### Beam search



#### Parallel computing

- local beam search
  - *k* randomly generated states
  - parallel k searches
  - half when a goal is found
- stochastic beam search stochastic hill climbing + beam search

### Metaheuristic optimization



#### **Evolution**

- Genetic algorithm
- Particle swarm optimization
- Ant colony optimization

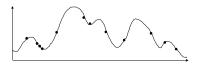


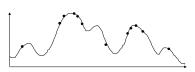
#### The algorithm consists of

- genetic representation
- fitness function

#### **Evolution phases**

- initialization
- crossover
- mutation

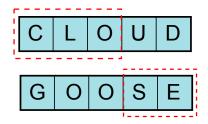





#### Initialization

- a large population of random chromosomes
- each chromosome represents a solution
- what is the best distribution?





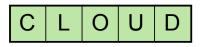



#### Crossover

- mating between individuals
- two individuals are chosen (How?)
- generating new individual(s) from two selected individuals (How?)






Crossover



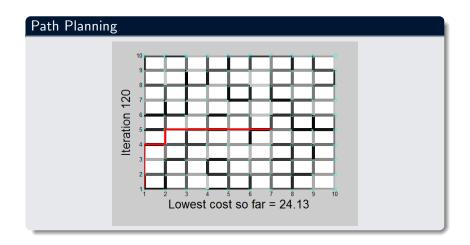
#### Mutation

- flip some bits of new individuals with some <u>low</u> probability (How?)
- inhibit premature convergence (a random walk through the search space)



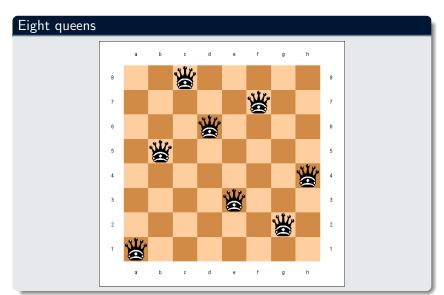


Mutation


### Philosophies in genetic algorithm



- parallel
- random
- convergence


### Example





### Example





# Example



| oom Schedule |                                                                                  |                                                              |                                                                                      |                                                              |                 |
|--------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------|
|              | Monday                                                                           | Tuesday                                                      | Wednesday                                                                            | Thursday                                                     | Friday          |
| 9:00         |                                                                                  |                                                              | 9:30 – 11:30 am                                                                      |                                                              |                 |
| 10:00        | 10 am – 12 noon<br>Colin Phillippo OR                                            |                                                              | Lorna Watt<br>Dr. Ebert-May's<br>lecture GTA                                         |                                                              |                 |
| 11:00        | Ralph Tingley                                                                    |                                                              | 11 am – 12 noon<br>Heidi Ziegenmeyer<br>Drs. Bray-Speth &<br>Momsen's lecture<br>GTA |                                                              |                 |
| Noon         | 12 noon – 2 pm                                                                   | 12 noon – 2 pm                                               | 12 noon – 2 pm                                                                       | 12 noon – 2:30 pm                                            | 12 noon – 2 pm  |
| 1:00         | Jeff Pierce OR                                                                   | Alana Bowers OR                                              | Sonya Lawrence OR                                                                    | Kevin Wyatt                                                  | Lou Keeley OR   |
| 2:00         | Orlando Alvarez-<br>Fuentes                                                      | Jorge Celi                                                   | Allison Rober                                                                        | 1:30 – 3:30 pm                                               | Sheridan Kelley |
| 3:00         | 3:00 – 4:00 pm<br>Heidi Ziegenmeyer<br>Drs. Bray-Speth &<br>Momsen's lecture GTA |                                                              |                                                                                      | Sara Wyse<br>Dr. Long's lecture<br>GTA                       |                 |
| 4:00         |                                                                                  | 4:00 – 5:00 pm<br>Rachel Cohen<br>Dr. Peters' lecture<br>GTA |                                                                                      | 4:00 – 5:00 pm<br>Rachel Cohen<br>Dr. Peters' lecture<br>GTA |                 |
| 5:00         |                                                                                  |                                                              |                                                                                      |                                                              |                 |



#### Continuous space

- initialization ?
- crossover ?
- mutation ?

# Swarm intelligence





