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ABSTRACT
This paper examines the dynamics of particle swarm op-
timization (PSO) by modeling PSO as a feedback cascade
system and then applying input-to-state stability analysis.
Using a feedback cascade system model we can include the
effects of the global-best and personal-best values more di-
rectly in the model of the dynamics. Thus in contrast to
previous study of PSO dynamics, the input-to-state stabil-
ity property used here allows for the analysis of PSO both
before and at stagnation. In addition, the use of input-to-
state stability allows this analysis to preserve random terms
which were heretofore simplified to constants. This analy-
sis is important because it can inform the setting of PSO
parameters and better characterize the nature of PSO as
a dynamic system. This work also illuminates the way in
which the personal-best and the global-best updates influ-
ence the bound on the particle’s position and hence, how
the algorithm exploits and explores the fitness landscape as
a function of the personal best and global best.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
Particle Swarm Optimization; Input-to-State Stability

1. INTRODUCTION
Particle Swarm Optimization (PSO) is a popular and well-

studied algorithm that was originally motivated by the flock-
ing behaviors of birds and insects. Soon after its first pub-
lication it was discovered that the structure of the PSO
algorithm is amenable to formal analysis using dynamical
systems theory (sometimes referred to as dynamic systems)
[5]. The use of this theory has informed the setting of pa-
rameters [16, 8], led to the proposal of new variants of the
algorithm [5], and allowed for the analysis of the behavior
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of the algorithm [15], especially the behavior at stagnation,
that is, when the algorithm fails to find better solutions [5].

While the study of the algorithm at stagnation is impor-
tant and a significant first step, it only answers questions
about the behavior at the point that PSO has degenerated
into random search. At that point the algorithm can be
mimicked by simply sampling from the appropriate distri-
bution [12]. In this paper we extend the limited work that
has been done to understand the behavior before stagnation,
that is, when the unique mechanisms of PSO are directing
the behavior of the algorithm.

By using a feedback cascade model we are able to include
both what we refer to as the position update which comes
from the PSO equations, but also the input update, that is,
the effect of the personal and global best. This paper does so
in contrast to prior work which focuses on the position up-
date. A cascade model also allows us to make fewer assump-
tions in mapping from PSO to a dynamical system model.
Using this model we are able to derive the conditions under
which the process is input-to-state stable [9], prove bounds
on both the particle motion and the mean of particle motion.
The input-to-state stable conditions and the bounds can in-
form parameter adjustments and other properties that can,
in turn, control the extent to which the algorithm explores
or exploits the fitness landscape. This is especially valuable
in the context of the design of future PSO variants.

The body of this paper is organized as described here.
In section 3, we model the PSO dynamics as a feedback
cascade system, which enables the input-to-state stability
analysis. The definition of input-to-state stability (ISS) and
its meaning in the context of PSO are also given. Section
4 shows that for particular parameter values, the position-
update component of a particle is input-to-state stable. Us-
ing the ISS property we then give the bound on particle
motion. We also use the ISS property in the context of the
analysis of the moments (the mean and higher moments)
of particle motion. In section 5, we use the ISS property
to help analyze the dynamics of the particle. Using the ISS
property of the input-update component, we can analyze the
dynamics of the particle before and at stagnation.

2. RELATED WORK
Although the input-to-state stable analysis given in this

paper can be applied to many versions of PSO, for this work
we use the formulas from Kennedy’s most recent definition
of PSO[2] for the constricted position-update rule. The con-
stricted position-update rule is



vij(k + 1) = χ[vij(k) + φPuPij(k)(xPij(k)− xij(k))

+ φGuGij(k)(xGij(k)− xij(k))],
(1a)

xij(k + 1) = xij(k) + vij(k + 1). (1b)

xij(k) represents the position of particle i in dimension j at
time k. Similarly, vij(k) represents the velocity of particle i
in dimension j also at time k. xGij(k) and xPij(k) are global
best (actually the topology best or local best) and personal
best positions observed by the swarm and the particle re-
spectively. uGij(k) and uPij(k) are independent random val-

ues drawn from [0, 1]. χ ∈ (0, 1), φP and φG are algorithm
parameters.

Due to the stochastic nature of the particle’s path and the
social interaction represented by the topology, the dynam-
ics of the algorithm is hard to evaluate in general. Under-
standing how the particles move guides how to improve the
algorithm design [1], particularly the stochastic factors in
the velocity update of Equation (1a). However once a par-
ticle is no longer able to find improvements in xG and xP ,
it exhibits the stagnation phenomenon [6]. In this state the
analysis is easier since there is no effect from the topology.

Previous work that assumes stagnation can be catego-
rized into two groups each based on how the analysis treats
the stochastic factors. The first approach is to ignore the
stochastic factors. Using this simplification, the convergence
of a particle at stagnation can be analyzed [5, 3]. The con-
vergence trajectories can be estimated [17] and the conclu-
sions are compared with empirical results [4]. By building a
linear system model [14], the PSO algorithm can be viewed
as a closed loop system and the convergence can be ana-
lyzed. Based on such a convergence analysis, parameters
can be set for best effect [16].

The second approach for handling the stochastic factors
is based on stochastic analysis. By taking the mean of the
stochastic variables, the stochastic terms can be converted
into constant terms. A convergence analysis of the mean and
variance of a particle at stagnation can also be obtained by
using the characteristic equation in a discrete-time model
[8]. In a similar way, other moments can be computed [12,
13, 11]. Using the discrete-time system model of different
moments, the equilibrium can be found. The stability re-
quirements can be obtained from the norm by setting the
root values of the characteristic equation to all be less than
1.

There is also some work that addresses the dynamics when
a particle is not in the stagnation phase. The discrete-time
dynamics of PSO, that is, the dynamics of particle trajec-
tory, can be approximated using a continuous-time model
[7]. Furthermore, the probability of convergence in time
can be analyzed by viewing the update process as a random
search process [18]. The process of particles reaching a local
optimum has also been analyzed [15].

3. INPUT-TO-STATE STABILITY OF PSO
Input-to-state stability analysis consists of two parts:

• the decomposition of the PSO algorithm into compo-
nents, and

• the input-to-state stability of each component.

Position Updatefrom
swarm 

Input Update

Particle

Figure 1: System structure of PSO

In this section, we model particle motion using a feedback
cascade model. Then we review the definition of the input-
to-state stability (ISS). We also explain why ISS should be
applied to PSO.

3.1 Feedback Cascade Model
For the purpose of input-to-state stability analysis we de-

compose the PSO algorithm into components as shown in
Figure 1. This decomposition is comprised of cascaded com-
ponents (the input update, followed by the position update)
and the feedback of the historical state. These two com-
ponents are the input-update component for the global best
(xGi (k)) and the personal best (xPi (k)), and the position-
update component for particle position (xi(k + 1)), which
depends on the inputs xGi (k) and xPi (k) as well as the pre-
vious position xi(k).

The properties of this system can be analyzed using the
input-to-state stability of the position-update component
and the input-update component. Given an input-to-state
stable position-update component, we will see that the con-
vergence of xi(k) depends on bounds on xGi (k) and xPi (k).

3.2 Input-to-state stability
Before reviewing the definition of input-to-state stability,

we first introduce several types of functions [9].

• K-function K : a function α : [0, a) → [0,∞) is con-
tinuous, strictly increasing and α(0) = 0.

• K∞-function K∞ : a function α : [0, a) → [0,∞) is a
K-function and α(s)→∞ as s→∞.

• KL-function KL : a function β : [0, a) × [0,∞) →
[0,∞) satisfies:

1. ∀t ≥ 0, β(·, t) is a K-function;

2. ∀s ≥ 0, β(s, ·) is decreasing and β(s, t) → 0 as
t→∞.

These functions are used to define input-to-state stability
in Definition 1.

Definition 1 (Input-to-state stable [9]). For x, a
discrete-time system defined as follows:

x(k + 1) = f(x(k), u(k)), (2)

with f(0, 0) = 0 1, the system is (globally) input-to-state
stable if there exist a KL-function β and a K-function γ

1This means that x = 0 is an equilibrium of the 0-input
system.



such that, for each input u ∈ lm∞ and each ξ ∈ Rn, it holds
that ∀k ∈ Z+,

|x(k, ξ, u)| ≤ β(|ξ|, k) + γ(‖u‖). (3)

The β() term in Equation (3) defines an initial bound with
a decaying property. The γ() term in Equation (3) defines
a bound determined by the input. This means that the β()
term gradually decreases to zero and the position is bounded
by a range determined by the bound on the input.

3.3 Importance of input-to-state stability
Under certain conditions the dynamics of complex systems

can be understood by first decomposing the system into a
set of individual input-to-state stable components. We will
take this approach with PSO. Parallel combination of input-
to-state stable components yields a combined structure that
is also input-to-state stable [10]. In the case of PSO and as
shown in Figure 1, if each component (representing a sin-
gle dimension) is input-to-state stable, the position-update
component which combines all the dimensions is also input-
to-state stable. Thus we have Property 1.

Property 1. The position-update component is input-to-
state stable if the position update in each dimension is input-
to-state stable.

This simplifies the analysis of the system since it allows us
to consider each dimension separately. The serial connec-
tion and the feedback connection also lead to some inter-
esting property from input-to-state stability, which will be
discussed in Section 5.

The input-to-state stability analysis also provides the tool
for the analysis of the convergence of PSO and the analysis
of bounds on particle motion. PSO is designed to strike an
effective balance between exploring and exploiting a fitness
landscape. A bound on a particle’s state is an indicator of
the nature of that balance. When this bound is large the par-
ticle is exploring. However, as a particle finishes exploring
and reach stagnation, a particle’s position should converge.

Input-to-state stability implies that the state of the system
is bounded in a range determined by the bounds on the
input. Before stagnation, when the personal best and global
best values have not converged, we can expect only a loose
bound on the particle state. These looser bounds reflect
both what is know about the update process itself and what
is know about the inputs to the update process, that is, the
personal best and the global best.

We call the bounds on the global best and personal best
the “exploit radius” and the bounds on the particle’s posi-
tion a “explore radius”. The ratio of the explore radius to
the exploit radius is determined by the parameters of the
position-update component. However, if the personal best
and global best converge to an estimated optimal position,
the exploit radius falls to zero and the explore radius con-
verges to a bound.

4. ANALYSIS OF INPUT-TO-STATE STABIL-
ITY IN PSO

We then show PSO satisfies the definition of input-to-state
stability when the parameters of PSO are set in a requisite
range. We also derive the bounds implied by the ISS prop-
erty and use the ISS property in Section 5 to find bounds

Explore radius

Exploit radius

Figure 2: Exploration and exploitation.

on particle motion. Last, we will use ISS to analyze the mo-
ments (the mean and higher moments) of particle motion.

In our analysis of the PSO algorithm, we seek to under-
stand how the particles converge to some position x∗, which
is intended (not guaranteed) by the algorithm to be the
global minimum position of the objective function.

For this analysis we use a one-dimension particle and ex-
tract the linear form of the position-update component. As
noted above, the one dimensional case can be extended to
many dimensions.

We begin our analysis of PSO input to state stability by
rewriting the PSO equations in (1) in the following way:

X(k + 1) = A(k)X(k) +B(k)U(k) (4)

with

A(k) =

[
χ −χφGuG(k)− χφPuP (k)
χ 1− χφGuG(k)− χφPuP (k)

]
and

B(k) =

[
χφGuG(k) χφPuP (k)
χφGuG(k) χφPuP (k)

]
.

The system state is X(k) = [v(k), x(k) − x∗]T , and the
system input is U(k) = [xG(k) − x∗, xP (k) − x∗]T 2. The
convergence of this model means that v(k)→ 0 and x(k)→
x∗.

4.1 Conditions for input-to-state stability for
position update in PSO

Using the definition of the PSO position update as given in
Equation (4), PSO can be shown to be input-to-state stable
as defined in definition 1.

Theorem 1. When |λmax(A(k))| < 1, the position-update
component of PSO (4) is input-to-state stable.

The proof follows the ISS-Lyapunov-function approach. The
ISS-Lyapunov function, defined in Appendix 6.1, can be
used to prove the input-to-state stability of a system and
analyze the state bound[9]. The details of the proof are
given in Appendix 6.2.

Note that in Equation (4), [v(k), x(k)− x∗]T = [0, 0]T is
an equilibrium position when the input [xG(k)−x∗, xP (k)−
2We use x∗ to represent an equilibrium point to the system.
In PSO, it can be a local optimum, a global optimum, or an
estimated optimum. We use it as a reference point to check
the bounds.



Figure 3: A bound on a particle’s position by a ref-
erence point x∗ from Equation (6). The ratio of two
radii indicates γ.

x∗]T = [0, 0]T . Without loss of generality, for an arbitrary
optimization problem x∗ would typically not be at the origin.
In such a problem, input-to-state stability means that the
boundaries of |v(k)| and |x(k) − x∗| would be transformed
and thus determined by |xG(k)−x∗| and |xP (k)−x∗|, but the
properties of ISS apply independent of where the function is
centered.

Having shown that PSO is input-to-state stable we can
now state a bound on particle position.

Corollary 1. Given a bound on the input ||u|| in the
position-update component, we have the bound on the parti-
cle position from Equation (4).

∀k,|x(k)− x∗| ≤

max

(
|x(0)− x∗|, γ(|

[
xG(k)− x∗, xP (k)− x∗

]T
|)
)
,

(5)
in which γ = α−1

3 ◦ σ. (α3 and σ are defined in Appendix
6.2.)

Proof. This is obtained from Remark 3.7 in [9] and by
choosing P be a symmetric identity matrix. Furthermore we
drop the velocity part because |x(k) − x∗| ≤ |[v(k), x(k) −
x∗]T |.

The max part is needed to account for the effect of the
starting point, represented by the first parameter. Even-
tually the effect of the starting point no longer affects the
system, formally:

∃T,∀k ≥ T, |x(k)−x∗| ≤ γ(|[xG(k)−x∗, xP (k)−x∗]T |). (6)

Figure 3 gives an example on how a particle’s boundary is
determined by the personal best and global best.

Corollary 2. Let A(k) =

[
χ −χφ
χ 1− χφ

]
, in which φ ∈

[0, φsup] , φsup = φP + φG and χ ∈ (0, 1). When φsup ∈(
0, 2(1+χ)

χ

)
, the system (4) is input-to-state stable.

The proof is given in Appendix 6.3.
Figure 4 shows the parameter space. The x-axis is φsup =

φP + φG and the y-axis is χ. The stable region in dark
blue is obtained from eigenvalue test on Theorem 1. The
red boundary is obtained from Corollary 2. It indicates the
equivalence of the results from Theorem 1 and Corollary 2.

Figure 4: Parameter space

4.2 Moment Analysis
Using the same perspective of the feedback cascade sys-

tem, the input-to-stable stability analysis can also be ap-
plied to moment analysis. Like the others [8, 11], we derive
models for the statistical features (moments) of the particle’s
position at stagnation. In contrast to this prior work, input-
to-state stability analysis can also provide bounds before a
particle reaches stagnation.

We adopt the approach of Jiang, Luo & Yang [8] to con-
struct an ISS model for the mean. Using that model E(x(k))
converges to

x̂ =
φPxP + φGxG

φP + φG

in stagnation. If we treat x̂ as a swarm average estimation
on the optimum, we are interested in how E(x(k)) deviates
from x̂. [

E(x(k + 1))− x̂
E(x(k))− x̂

]
= Am

[
E(x(k))− x̂

E(x(k − 1))− x̂

]
+Bm

[
E(xP (k))− x̂
E(xG(k))− x̂

]
,

(7)

with

Am =

[
1 + χ− χφP

2
− χφG

2
−χ

1 0

]
and

Bm =

[
χφP

2
χφG

2
0 0

]
.

The convergence of E(x(k)) in stagnation is given in [8,
11]. Even without the stagnation assumption, the input-to-
state stable analysis on Equation (7) indicates how E(x(k))
will deviate from x̂ anytime we know how E(xG(k)) and
E(xP (k)) deviate from x̂. Stagnation is a simple case of
knowing how E(xG(k)) and E(xP (k)) deviate from x̂. This
special case is discussed more later in this paper.

We now proceed to show the conditions that must hold
for the mean model to be input-to-state stable.

Theorem 2. The system (7) is input-to-state stable, if
|λmax(Am)| < 1.

Proof. The proof process is similar with Theorem 1, but
we can get a constant symmetric positive definite Qm from
ATmPAm − P = −Qm.



Similar to Corollary 2, we have Corollary 3 for parameter
selection on mean convergence. Note that when the condi-
tion in Corollary 2 is satisfied, the condition in Corollary 3
is also guaranteed. This means that when the system (4) is
input-to-state stable, the mean dynamics (7) is also input-
to-state stable.

Corollary 3. Let Am =

[
1 + χ− χφP

2
− χφG

2
−χ

1 0

]
, in

which φ ∈ [0, φsup] and φsup = φP + φG and χ ∈ (0, 1).

When φsup ∈
(

0, 4(1+χ)
χ

)
, the system (7) is input-to-state

stable.

The proof is given in Appendix 6.4.
Similar to Corollary 1, we can use the Qm to determine

the state bound.

Corollary 4. If the system (7) is input-to-state stable,
we have a bound

∃T,∀k > T,

|E(x(k))− x̂| ≤ γm|
[
E(xP (k))− x̂, E(xG(k))− x̂

]T
|,
(8)

with

γm =
2‖Am‖2‖Bm‖2 + λmin(Qm)2‖Bm‖2

2(λmin(Qm))3
. (9)

In a similar way, we can apply the input-to-state stability
analysis to the variance model [8] and higher order moment
models [13].

5. IMPLICATIONS OF PARTICLE ISS
In this section, we add the input-update component that

was first shown in Figure 1 and then analyze the convergence
of particle position.

Since by Theorem 1 PSO is input-to-state stable, and
therefore by Corollary 1 the stability of the cascade system
depends on the output of the input-update component. We
can say:

1. If the input-update component generates converging
personal best and global best, the bound of the particle
position will converge;

2. If the personal best and global best vary within a
bound, the particle will converge within a bound;

3. If the personal best and global best become constant,
the particle will converge within a bound.

4. If the personal best and global best are constant and
the same, the particle will converge toward the global
best.

By Theorem 2 and 4, we can make similar statements about
the particle mean. As well, this boundary analysis could be
applied to higher moments.

Furthermore, by Equation (5), we know that the conver-
gence of a particle’s position x(k) to x∗ depends on how
xP (k) and xG(k) converge to x∗ when the position-update
component is input-to-state stable. In particular, the bound
on the distance between a particle’s position and x∗ is de-
termined by the initial distance x(0) − x∗, xP (k) − x∗ and
xG(k)− x∗.

5.1 Stagnation
Since stagnation is defined as a state where a particle fails

to find better positions, in stagnation xP (k) and xG(k) are
constant in k, and can thus be represented as xP and xG

respectively. If we assume that uP (k) and uG(k) are equiv-
alent and constant, it can be stated that

x̂ =
φPxP + φGxG

φP + φG
(10)

is an equilibrium point for stagnation as noted in previous
work [5].

By Theorem 2, in stagnation the mean of the position
will converge. Corollary 1 describes a bound on position as
a function of the PSO parameters. Similarly, assuming that
parameters are chosen that will also lead to the convergence
of higher moments similar to previous work [8, 13], the pat-
tern of particle movement at stagnation could be simulated
by a distribution constructed to be consistent with PSO mo-
ment information[13].

By letting x∗ = x̂ be the reference point, and by Corollary
1, we can go beyond prior work and can identify a bound on
PSO behavior at stagnation:

∃T,∀k > T, |x(k)− x̂| ≤ γd|[xP − x̂, xG − x̂]T |, (11)

with

γd =
2‖A′‖2‖B′‖2 + λmin(Q′))2‖B′‖2

2(λmin(Q′))3
. (12)

Particularly, when xP = xG, we have x̂ = xG = xP . By
Equation (11) we know that ∃T, x(T ) = xG, which means
x(k)→ xG. Thus we have shown the convergence of PSO in
stagnation without treating the random terms as constants
required by the work described in Section 2.

5.2 Before stagnation
Input-to-state stable analysis also supports understanding

the cases before stagnation. When the xP (k) and xG(k) are
not constant, the system state depends on the property of
the input-update component. The personal-best update is

xPi (k) = arg max
x∈{xi(k),xPi (k−1)}

f(x). (13)

The global-best update is

xGi (k) = arg max
x∈{xi(k),xGi (k−1)}

f(x). (14)

As in Figure 1, there exists a feedback cascade system struc-
ture for a particle. If we assume that there is another model
for swarm information sharing, which implements the xG(k)
update. Then in the particle, the xG(k) can be viewed
as an input that is independent with the current particle
state. The feedback loop uses the current state to update
the xP (k). As in Equation (13) and (14), the input-to-state
stability of the input-update component depends on f(x),
which indicates that the input-to-state stability relies on the
shape of the fitness distribution. Assuming that the PSO pa-
rameters are set such that the position-update component is
input-to-state stable, there are three cases in analyzing the
dynamics of a particle.

• When only the xG(k) is constant
This happens usually when a “good” global best is
found. Thus the swarm stops finding better global



bests. The input from the swarm can be modeled as
a constant factor of the system. However, the parti-
cle still finds new personal best positions and updates
the personal best. The system dynamics of the parti-
cle is determined by the feedback state, which updates
the personal best. In this process, f(xP ) < f(xG),
otherwise, xG will be updated. In this case, the two
components form a feedback loop structure. The small
gain theorem [9] can be used. If the multiplication of
the gain factors of two components is less than 1, the
system will still converge.

• When only the xP (k) is constant
This usually means that this particle is “stuck” in ex-
ploring a local region but some other particles are con-
tinuously finding new better position. Thus the global
best is being updated. In this case, the feedback of the
system does not impact the input-update component
and thus nor does it impact the position-update com-
ponent. In this case the system model can be simplified
by ignoring the feedback. As a result, the system falls
into only a serial cascade system because there is no
feedback for this particle. If the input-update com-
ponent is input-to-state stable, the serial connection
of two input-to-state stable component is still input-
to-state stable (it can be shown that a serial cascade
of ISS components is also input-to-state stable [10]).
Since this serial cascade system is input-to-state stable,
the new position will be bounded somewhere around
xG(k). This implies that the particle will converge
toward the xG(k). If we have f(xG) > f(xP ), in the
assumption of the continuity in the fitness space, when
the particle gets closer to the global best, there exits
some region that f(x) > f(xP ). The xP will start to
change.

• When both the xG(k) and xP (k) are not constant
This usually means that both the particle and the
swarm it belongs to keep on finding better positions.
Thus both the particle updates the personal best and
the swarm updates the global best. In this case, the
input-to-state stability of the input-update component
is harder to guarantee. However, if the change of xG(k)
and xP (k) is bounded, the movement of the particle is
still bounded by Corollary 1.

Generally, in the PSO, the dynamics of a particle switches
in between these cases before eventually reaching the stag-
nation. Understanding the dynamics of the particles before
stagnation supports the exploration and exploitation capa-
bility of particles in optimal search.

6. CONCLUSION
In this paper, we have decomposed the particle in the PSO

algorithm into a feedback cascade model, which consists of
input-update and position-update components. We intro-
duce the input-to-state stability analysis to the position-
update component. For an input-to-state stable position-
update component, if the input to this component is bounded,
the state is bounded; also if the input to the component con-
verges, the state converges. The convergence of a particle in
PSO is determined by the output of the input-update com-
ponent, which are the personal best and global best. If they
are in stagnation, the particle converges.

The analysis of a cascade structure used here can be ap-
plied to a wide range of PSO variants. In the cases that the
same position-update component but different input-update
components are used, the convergence and the boundary of
the particles are determined by whether the input-update
component generates converging or bounded personal best
and global best. For variants that use a different position-
update component, the ISS properties would need to be ver-
ified.

The ISS property of the input-update component depends
on the fitness distribution. We provide several scenarios for
the dynamics of the particle. We show that the optimal
search process switches among these scenarios and how the
input-to-state stability analysis should be applied into dif-
ferent scenarios.

Appendix
6.1 ISS-Lyapunov function

Using the definitions of aK-function and aKL-function in
Section 3 we can define an ISS-Lyapunov function as follows,
an ISS-Lyapunov function V : Rn → R≥0 satisfies:

1. ∃α1, α2 ∈ K such that ∀ξ ∈ Rn , α1(|ξ|) ≤ V (ξ) ≤
α2(|ξ|).

2. ∃α3 ∈ K∞, σ ∈ K such that ∀ξ ∈ Rn,∀µ ∈ Rm,V (f(ξ, µ))−
V (ξ) ≤ −α3(|ξ|) + σ(|µ|).

6.2 Proof of Theorem 1
Proof. Let P be an identity matrix. As |λmax(A(k))| <

1, we have ‖AT (k)PA(k)‖ ≤ ‖P‖‖A(k)‖2 ≤ ‖P‖|λmax(A(k))|2
< ‖P‖. Because P is an identity matrix it is positive def-
inite, and thus AT (k)PA(k) is positive definite or positive
semi-definite by definition. So by positive definite ordering
we have AT (k)PA(k) < P .

Let −Q(k) = AT (k)PA(k) − P . Since AT (k)PA(k) < P
then −Q(k) < 0 furthermore ∃Q′∀k,Q(k) > Q′ > 0.

By the Lemma 3.5 in [9], if we can show that a proposed
positive definite Lyapunov function is an ISS-Lyapunov func-
tion, the system is input-to-state stable.

Define a Lyapunov function

V (X(k)) = XT (k)PX(k). (15)

We can have λmin(P )|X(k)|2 ≤ V (X(k)) ≤ λmax(P )|X(k)|2
and λmin(P ) = λmax(P ).

Let α1(ξ) = λminξ
2 and α2(ξ) = λmaxξ

2, we have V (x)
satisfying condition 1 of the ISS-Lyapunov function defini-
tion.

By applying Equation (4) to V (X(k+ 1))− V (X(k)), we
have

V (X(k + 1))− V (X(k))

=[XT (k)AT (k) + UT (k)BT (k)]P [A(k)X(k) +B(k)U(k)]

−XT (k)PX(k)

=XT (k)AT (k)PA(k)X(k) +XT (k)AT (k)PB(k)U(k)

+ UT (k)BT (k)PA(k)X(k) + UT (k)BT (k)PB(k)U(k)

−XT (k)PX(k)
(16)

As P is identity matrix, it is symmetric, thus

[XT (k)AT (k)PB(k)U(k)]T = UT (k)BT (k)PA(k)X(k).
(17)



V (X(k+1)), V (X(k)) ∈ R, we haveXT (k)AT (k)PB(k)U(k)
and UT (k)BT (k)PA(k)X(k) are both real value (like 1× 1
matrix). Thus,

XT (k)AT (k)PB(k)U(k) = UT (k)BT (k)PA(k)X(k). (18)

We then have

V (X(k + 1))− V (X(k))

=−XT (k)[AT (k)PA(k)− P ]X(k)

+ UT (k)BT (k)PB(k)U(k)

+ 2XT (k)AT (k)PB(k)U(k)

≤−XT (k)Q′X(k) + UT (k)BT (k)PB(k)U(k)

+ 2XT (k)AT (k)PB(k)U(k)

(19)

By applying matrix norm, we have

V (X(k + 1))− V (X(k))

≤− λmin(Q′)|X(k)|2 + |BT (k)PB(k)||U(k)|2

+ 2|AT (k)PB(k)||U(k)||X(k)|

=− 1

2
λmin(Q′)|X(k)|2 + |BT (k)PB(k)||U(k)|2

− 1

2
λmin(Q′)|X(k)|2 + 2|AT (k)PB(k)||U(k)||X(k)|

=− 1

2
λmin(Q′)|X(k)|2

+

(
2|AT (k)PB(k)|2

(λmin(Q′))2
+ |BT (k)PB(k)|

)
|U(k)|2

− 1

2
λmin(Q′)[|X(k)|2 − 4|AT (k)PB(k)|

λmin(Q′)
|X(k)||U(k)|

+
4|AT (k)PB(k)|2

(λmin(Q′))2
|U(k)|2]

(20)
By completing the square, we have

V (X(k + 1))− V (X(k))

≤− 1

2
λmin(Q′)|X(k)|2

+

(
2|AT (k)PB(k)|2

(λmin(Q′))2
+ |BT (k)PB(k)|

)
|U(k)|2

− 1

2
λmin(Q′)

(
|X(k)| − 2|AT (k)PB(k)|

λmin(Q′)
|U(k)|

)2

≤− 1

2
λmin(Q′)|X(k)|2

+

(
2‖AT (k)PB(k)‖2

(λmin(Q′))2
+ ‖BT (k)PB(k)‖

)
|U(k)|2.

(21)

Because uP (k) ∈ [0, 1], there exist an A′ and B′ such that
‖A(k)‖ ≤ ‖A′‖ and ‖B(k)‖ ≤ ‖B′‖. We have ‖AT (k)PB(k)‖
≤ ‖A′‖‖P‖‖B′‖ and ‖BT (k)PB(k)‖ ≤ ‖P‖‖B′‖2.

Since the identity matrix P has ||P || = 1:

V (X(k + 1))− V (X(k))

≤− 1

2
λmin(Q′)|X(k)|2 +

(
2‖A′‖2‖B′‖2

(λmin(Q′))2
+ ‖B′‖2

)
|U(k)|2.

(22)
Let

α3(ξ) =
1

2
λmin(Q′)ξ2,

and

σ(ξ) =

(
2‖A′‖2‖B′‖2

(λmin(Q′))2
+ ‖B′‖2

)
ξ2.

Thus we have V (X(k + 1)) − V (X(k)) satisfying condition
2 of the ISS-Lyapunov function definition and so (15) is an
ISS-Lyapunov function. Using Jiang’s Lemma 3.5[9], the
position-update component of PSO (Equation (4)) is input-
to-state stable.

6.3 Proof of Corollary 2
Proof. Let a = (1 + χ) − χφ. The eigenvalues of A(k)

are

λ =
a±

√
a2 − 4χ

2
.

There can be two cases.

1. If a2 ≥ 4χ, the eigenvalues are real number. We have
a ≥ 2

√
χ or a ≤ −2

√
χ.

If a ≥ 2
√
χ, then |λmax| < 1 derives

0 <
a−

√
a2 − 4χ

2
≤
a+

√
a2 − 4χ

2
< 1.

It means that 2
√
χ ≤ a < 1 + χ.

If a ≤ 2
√
χ, then |λmax| < 1 derives

−1 <
a−

√
a2 − 4χ

2
≤
a+

√
a2 − 4χ

2
< 0.

It means that −(χ+ 1) < a ≤ −2
√
χ.

2. If a2 < 4χ, the eigenvalues are complex number. We
have −2

√
χ < a < 2

√
χ.

|λmax| < 1 derives

a2

4
+
a2 − 4χ

4
< 1.

It means that −2
√

2(1 + χ) < a < 2
√

2(1 + χ). Be-

cause
√

2(1 + χ) > 2
√
χ, we have −2

√
χ < a < 2

√
χ.

Combining these two cases, we have −(1 + χ) < a < 1 + χ.

It equals to φ ∈
(

0, 2(1+χ)
χ

)
.

6.4 Proof of Corollary 3
Proof. The proof is similar with that in Subsection 6.3.

In this case, a = (1 + χ) − φ
2
χ. Similarly, we can have

two cases and derive −(1 + χ) < a < 1 + χ. It equals to

φ ∈
(

0, 4(1+χ)
χ

)
.
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