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Abstract
Many robotic tasks require solutions that maxi-
mize multiple performance objectives. For ex-
ample, in path-planning, these objectives often
include finding short paths that avoid risk and
maximize the information obtained by the robot.
Although there exist many algorithms for multi-
objective optimization, few of these algorithms ap-
ply directly to robotic path-planning and fewer
still are capable of finding the set of Pareto opti-
mal solutions. We present the MORRF∗ (Multi-
Objective Rapidly exploring Random Forest∗) al-
gorithm, which blends concepts from two differ-
ent types of algorithms from the literature: Optimal
rapidly exploring random tree (RRT∗) for efficient
path finding [Karaman and Frazzoli, 2010] and a
decomposition-based approach to multi-objective
optimization [Zhang and Li, 2007]. The random
forest uses two types of tree structures: a set
of reference trees and a set of subproblem trees.
We present a theoretical analysis that demonstrates
that the algorithm asymptotically produces the set
of Pareto optimal solutions, and use simulations
to demonstrate the effectiveness and efficiency of
MORRF∗ in approximating the Pareto set.

1 Introduction
Many tasks assigned to robots are complex, can be performed
in several different ways, and must maximize several different
performance objectives. For example, a robot in a search task
may be expected to maximize the area that it covers while
minimizing energy consumption and avoiding risk (see, for
example [Mei et al., 2005; Yi and Goodrich, 2014]). As an-
other example, a robot manipulator may need to satisfy per-
formance criteria related to movement, joint velocities, joint
accelerations, etc. [Pires et al., 2004].

A common method for finding a solution to a multi-
objective optimization problem is to optimize a single ob-
jective created by a weighted sum of the multiple objectives.
In path-planning the properties of the path produced by this
method depend strongly on how each objective is weighted.
This means that a programmer, designer, or human teammate
must decide how to assign the weights so that the qualitative

behavior matches what is intended. In addition to the burden
this places on the human operator, optimizing a weighted sum
does not work when the multiple objectives are very difficult
to compare or are expressed in incommensurate units.

In response to these challenges, it is useful to find the set of
Pareto optimal solutions to the multi-objective path-planning
problem, meaning the set of solutions for which there is no
other solution that produces better payoffs for every objec-
tive. If an algorithm could produce the set of Pareto optimal
solutions then a human could interactively explore this set to
find one or more solutions that matches his or her expecta-
tions. The objective of this paper is to create an algorithm
that efficiently finds the Pareto set in a multi-objective path-
planning problem.

Most popular methods in multi-objective optimization do
not naturally apply to path-planning problems [Zhang and
Li, 2007; Deb and Jain, 2014]. The main reason for this
is that path-planning often represents the problem to be
solved as a semi-structured tree with an exponential num-
ber of possible trajectories through the tree, and the num-
ber of evaluations of the objective function required by ex-
isting algorithms do not scale well when there are an ex-
ponential number of solutions. One approach to addressing
this issue is to change the representation for a path by, for
example, coding a path as a sequence of fixed-length line
segments represented by direction [Ahmed and Deb, 2013;
Howlett et al., 2006] or waypoints [Sujit and Beard, 2009;
Pires et al., 2004] so that an evolutionary algorithm can
be applied. This produces an encoding that can be “fed
into” an appropriate evolutionary algorithm to search for the
Pareto set. Unfortunately, these approaches do not scale
well for large problems, because the number of segments
required to represent the paths grows too quickly and es-
timating the required number of segments a priori is very
challenging. Another approach is to represent the path as a
point in a very high-dimensional vector space. In this ap-
proach a path is represented as a point in a n ∗ d dimen-
sional space formed by n d-dimensional way-points. If the
number of way-points can be held constant, we can use stan-
dard approaches to explore the space. However the search
can be more difficult if we allow the number of way-points,
and therefor the dimensionality of the optimization prob-
lem, to vary. Indeed, we will use this to guide our solu-
tion, but the algorithm we present works when the obsta-



cles in the path-planning space introduce discontinuities in
these high-dimensional spaces, which limits the applicability
of heuristic-based search approaches [Sujit and Beard, 2009;
Zhang and Li, 2007].

The RRT (Rapidly exploring Random Tree) algorithm is
popular for finding feasible solutions from a start position to
a goal position in continuous or very large search spaces; it
also works well when environments have complex obstacles.
The reason that RRT is popular is that the tree structure tends
to find solutions very efficiently. The RRT∗ algorithm was a
recently introduced modification to RRT that is guaranteed to
find an optimal path given enough sampling time [Karaman
and Frazzoli, 2011; 2010].

The remainder of the paper presents the MORRF∗ (Multi-
Objective Rapidly exploring Random Forest*) algorithm,
which we used to find a set of Pareto optimal paths. MORRF∗
blends concepts from RRT∗ a decomposition-based approach
to multi-objective optimization [Zhang and Li, 2007].

2 Related Work
Prior work has modeled the search space as a graph
and applied a multi-objective A* search to find the solu-
tion [Mandow et al., 2005]. The limitation of this approach
is that it requires an a priori discretization rather than a dis-
cretization that is guided by the objectives as is done in RRT∗;
a coarse discretization throws away potentially valuable in-
formation and a fine discretization increases complexity and
adds redundancy in the resulting graph structures. Obstacles
can make it more difficult to determining which cells in the
discretized space are connected to which others, especially
when searching a space of more than 2 dimensions such as
in planning the trajectory for a robotic manipulator. Another
approach that uses an a priori discretization (and suffers from
these limitations) is to encode a path as a sequence of direc-
tions from one cell to next cell and then using the NSGA-II
algorithm to find a set of Pareto optimal solutions [Ahmed
and Deb, 2013]. Constrained splines have been introduced
to interpolate a sequence of way points into a trajectory that
avoids obstacles [Ahmed and Deb, 2011], but the effect of the
interpolation on the quality of the solution has not been eval-
uated. In addition to the sorting approach used in NSGA-II,
evolutionary algorithms based on the decomposition method
have also been proposed [Deb and Jain, 2014].

Evolutionary algorithms can be used to fine the Pareto set,
but these approaches tend to be inefficient when applied to
spaces with high dimensions [Marler and Arora, 2004]. For
such spaces, small deviations in possible solutions may need
to be considered in order to find an optimal solution, but this
means exploring many possible solutions for problems with
non-linearities or multiple local maxima. A path in a fixed-
length search tree of depth d can be considered as a point
in <d, so tree-based approaches followed by an evolutionary
”fine-tuning” stage risk running into the problems just listed
with evolutionary approaches.

In contrast to searching through and comparing solutions
in order to find the Pareto optimal set, decomposition-based
methods provide an attractive alternative. In this paper we use
a decomposition-based method similar to MOEA-D [Zhang

and Li, 2007]. MOEA-D is an algorithm that decomposes
a multi-objective optimization problem into a set of sub-
problems. Each subproblem uses a weighed combination of
the objectives to find specific points in the Pareto set or to
guide the search for such points. Let λ = [λ1, · · · , λK ]T

be a weighting vector such that
∑K
k=1 λk = 1. Let

{c1(·), c2(·), . . . cK(·)} denote the K-element set of objec-
tive functions, let c(x) = [c1(x), c2(x), . . . , cK(x)]T , and
let x denote a potential solution. Finally, let zutop =
[z∗1 , · · · , z∗K ]T denote the so-called Utopia reference vec-
tor. Three types of decomposition methods have been used
in prior work [Zhang and Li, 2007]; however we will use
only the two methods described below, leaving the third (the
boundary intersection method) to future work.

arg max
x

K∑
k=1

λkck(x) weighted sum (1)

arg min
x

max
1≤k≤K

{λk
(
|ck(x)− zutopk |

)
} Tchebycheff (2)

The solutions generated by each method are a subset of the
Pareto optimal set.

Sampling-based path planning works effectively in contin-
uous space. The RRT (Rapidly exploring Random Tree) has
been one of the most popular tools, which efficiently explores
the space by randomly sampling the search space; this algo-
rithm tends to work well in the presence of complex obsta-
cles. Unfortunately, RRT has been shown to fail in optimality
guarantee [Karaman and Frazzoli, 2010]. In response, the
RRT∗ algorithm was proposed, which uses a Rewire process
to gradually update the tree structure when new samples of
the space indicate that this is needed. Thus RRT∗ is asymp-
totically optimal [Karaman and Frazzoli, 2010; 2011].

3 Multi-Objective Rapidly exploring Random
Forest∗

In this section, we present an algorithm that explores the so-
lution space using RRT∗-based tree structures but uses multi-
ple trees in the spirit of decomposition-based multi-objective
optimization. Because a set of trees are constructed in the
exploration process, we call the algorithm MORRF∗ (Multi-
Objective Rapidly exploring Random Forest∗).

Consider a multi-objective path planning problem defined
on a bounded, connected open set X ⊂ Rd of possible
solutions, and K different objectives {c1(·), c2(·), ...cK(·)}.
Without loss of generality, assume that the objective is to min-
imize these functions. Since the Pareto optimal set is not
enumerable, the goal is to find a representative, finite (M -
element) subset of the Pareto optimal set.
Definition 1. Multi-Objective Path Planning Consider a
bounded, connected open set X ⊂ Rd, an obstacle space
Xobs, an initial state xinit, and a goal region Xgoal. Con-
sider the set of K objectives determined by a vector function
c(·) = [c1(·), . . . , cK(·)]T defined by c : X → RK . Denote
the obstacle-free space by Xfree = X \ Xobs. Note that c
is defined for all points in X both those in free space and
obstacle space.

Define a path in X as a continuous curve parameterized
by s, denoted by σ : [0, s] → X . Define the cost of the



Figure 1: Tchebycheff method of finding Pareto front.
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Figure 2: Rapidly exploring process

path as the vector-valued function c(σ) =
∫
σ
c(x)ds. The

goal is to find M Pareto optimal paths σ∗ ∈ Σ∗ that (a)
∀τ ∈ [0, s], σ∗(τ) ∈ Xfree ; (b) σ∗(0) = xinit and σ∗(s) =
Xgoal; (c) There does not exist σ that ∀k ∈ K, ck(σ) ≤
ck(σ∗) and ∃k′ ∈ K, ck′(σ) < ck′(σ

∗).

Adopting the idea from the MOEA-D algorithm [Zhang
and Li, 2007], the M elements in the solution set Σ∗ will be
obtained by decomposing the multi-objective problem intoM
subproblems. In this paper, we use the Tchebycheff approach
from MOEA-D. The Tchebycheff approach requires us to de-
fine a Utopia reference vector zutop in the fitness space. As
illustrated in Figure 1, the Utopia reference vector is defined
as that point in cost space that would be obtained if it were
possible to find a solution that produced the minimum value
for all objectives, that is the kth element of zutop is given by
zutopk = arg minx∈X ck(x).

We will need one type of RRT∗ structure to explore in an
attempt to find the Utopia reference vector in payoff space
and another type of RRT∗ structure to find paths that mini-
mize the Tchebycheff condition. Thus, there are two types of
tree structures used for the optimization process.
• Each reference tree explores using a single objective
ck(x), k ∈ K. The cost of each vertex is calculated us-
ing the kth objective function.

• Each subproblem tree explores a subproblem gm(x |
λm, z

utop),m ∈ M . The cost associated with each ver-
tex is calculated using gm(x) defined by the corresponding
approach.

The K reference trees and M subproblem trees constitute the
exploration forest.

The main flow of the MORRF∗ algorithm is given in Algo-
rithm 1. Each reference and subproblem tree are a collection
of edges and vertices, Gr = (Vr, Er) and Gs = (Vs, Es),
respectively, and the collection of reference trees and sub-
problem trees are denoted by Gr = {Gr : r ∈ {1, . . . ,K}}
and Gs = {Gs : s ∈ {q, . . . ,M}.

Note that each tree, reference and subproblem, uses the
same set of vertices, meaning they all share the same points in
configuration space. The differences between the trees is the
edge set; each reference tree and each subproblem tree has a
different way of connecting the vertices.

In each iteration, xrand is generated by randomly sam-
pling from the configuration space. The set of vertices is then
searched to find that vertex whose position is nearest to the
random point; since all trees share the same set of vertices,
any tree G ∈ Gr ∪Gs may be used to find the nearest point.
The location of this vertex is labeled xnearest. The process of
finding xnew is represented in the top layer of Figure 2.

The exploration at each iteration is given in Algorithm 1.
Like RRT∗, when the algorithm stops, each reference tree and
subproblem tree returns a path, and the set of all these paths
forms the solution set.

Algorithm 1 Multi-Objective Rapidly exploring Random
Forest∗

1: for each Vr ∈ Vr do
2: Vr ← {xinit}; Er ← ∅; i← 0

3: for each Vs ∈ Vs do
4: Vs ← {xinit}; Es ← ∅; i← 0

5: while i < N do
6: xrand ← SAMPLE (i) ; i← i+ 1
7: G is arbitrary graph from Gr ∪Gs.
8: xnearest ← NEAREST(G, xrand)
9: xnew ← STEER(xnearest, xrand, η)

10: if OBSTACLEFREE(xnearest, xnew) then
11: for each Gr ∈ Gr do
12: Gr ← EXTENDRef (Gr, xnew, xnearest , r)
13: for each Gs ∈ Gs do
14: Gs ← EXTENDSub (Gs, xnew, xnearest , s)

We now define several functions, using appropriately mod-
ified definitions from [Karaman and Frazzoli, 2010].
• SAMPLE(): Returns independent uniformly distributed

samples from Xfree.
• NEAREST(): Returns a position of the vertex whose po-

sition is closest to point x. NEAREST(G = (V,E), x) =
arg minv∈V ‖x− v‖.

• STEER(): Given two points x and y, returns a point z on
the line segment from x to y that that is no greater than η
from y. STEER( x, y, η ) = arg minz∈Rd,‖z−x‖≤η‖z − y‖.

• OBSTACLEFREE(x, x′): Returns True if [x, x′] ⊂ Xfree ,
which is the line segment between x and x′ lies in Xfree .
As illustrated in Figure 2, second layer, edges to the refer-

ence trees are added before the edges to the subproblem trees.
This allows us to compute the Utopia reference vector using
the path costs for each reference tree, each reference tree re-
turning a path that approximates the minimum cost for one
objective. The Utopia reference vector is then used to deter-
mine which edges should be added for each subproblem.

Consider the second layer in Figure 2, which shows the
exploration process for the reference trees. When a new po-
sition is obtained (red dot in Figure 2), all reference trees add
a vertex that corresponds to this new location. Each refer-
ence tree then connects this new vertex to existing nodes by



“rewiring” a set of neighboring vertices within a specified ra-
dius (red dash circle in Figure 2). The process of rewiring
consists of adding edges between existing vertices and the
new vertex. This is done using the EXTEND method, given in
Algorithm 2.

Algorithm 2 EXTENDRef (G, xnew , xnearest , k)
1: if xnew = xnearest then return G = (V,E)

2: V ′ ← V ∪ {xnew}
3: xmin ← xnearest
4: Xnear ← NEAR(G, xnew, |V |)
5: for each xnear ∈ Xnear do
6: if OBSTACLEFREE(xnew, xnear) then
7: c′k ← COSTk(xnear) +ck( LINE(xnear, xnew) )
8: if c′k < COSTk(xnew) then
9: xmin ← xnear

10: E′ ← E′ ∪ {(xmin, xnew)}
11: for each xnear ∈ Xnear \ {xmin} do
12: if OBSTACLEFREE(xnew, xnear) then
13: c′k ← COSTk(xnew) +ck( LINE(xnew, xnear) )
14: if c′k < COSTk(xnear) then
15: xparent ← PARENT(xnear)
16: E′ ← E′ \ {(xparent, xnear)}
17: E′ ← E′ ∪ {(xnew, xnear)}

return G′ = (V ′, E′)

The precise definitions of the methods used in the Algo-
rithm 2 are given below.
• NEAR(G, x, η): Returns a set of all vertices within

the closed ball of radius rn centered at x, in which
rn = min{( γξd

logn
n )1/d, η}. The volume of the ball is

min{γ logn
n , ξdη

d}.
• LINE(x, x′) : [0, s] ← Xfree denotes the path defined by

line segment from x to x′.
• COST(v): Returns the cost of the unique path (because G

is a tree) from xinit to the vertex v ∈ V . COST(xinit) = 0.
Consider the third layer in Figure 2, which illustrates how

the subproblem trees “rewire” to connect to the new ver-
tex. The Utopia reference vector, ẑutopk is defined as the
k-dimensional vector constructed from each reference tree.
The minimum cost of each path from the starting vertex over
any other vertex is computed for each reference tree. Using
the Utopia reference vector, each subproblem tree connects
its new vertex and rewire neighboring vertices in a radius as
well. Algorithm 3 precisely follows Algorithm 2 except that
instead of computing the cost using one of the objectives, the
cost is computed using the Tchebycheff method; each of the
mth subproblem trees corresponds to a different weighting
vector λm. This is performed using the FITNESS method.

The FITNESS method computes costs using one of the cost
functions in Equations (1)-(2). Different values of λm are ob-
tained using the pattern in the MOEA-D algorithm: (a) pre-
deterimining the range of the K-cost functions, {ck() :
1 . . .K} and (b) sampling from the K-dimensional hyper-
cube defined by these ranges. The M samples from this hy-
percube can be obtained by either creating a uniform (hyper)-
grid or by doing uniform sampling across the space.

Algorithm 3 EXTENDSub (G, xnew , xnearest ,m)
1: if xnew = xnearest then return G = (V,E)

2: V ′ ← V ′ ∪ {xnew}
3: xmin ← xnearest
4: Xnear ← NEAR(G, xnew, |V |)
5: for each xnear ∈ Xnear do
6: if OBSTACLEFREE(xnew, xnear) then
7: c′ ← COST(xnear) +c( LINE(xnear, xnew) )
8: η′ = FITNESS( c′, ẑutop | λm )
9: cnew = COST(xnew)

10: ηnew = FITNESS( cnew, ẑutop | λm )
11: if η′ < ηnew then
12: xmin ← xnear
13: E′ ← E′ ∪ {(xmin, xnew)}
14: for each xnear ∈ Xnear \ {xmin} do
15: if OBSTACLEFREE(xnew, xnear) then
16: c′ ← COST(xnew) +c( LINE(xnew, xnear) )
17: η′ = FITNESS( c′, ẑutop | λm )
18: cnear = COST(xnear)
19: ηnear = FITNESS( cnear, ẑutop | λm )
20: if η′ < ηnear then
21: xparent ← PARENT(xnear)
22: E′ ← E′ \ {(xparent, xnear)}
23: E′ ← E′ ∪ {(xnew, xnear)}

return G′ = (V ′, E′)

4 Analysis
The analysis depends on the following restrictions on the cost
functions and obstacle placement required by the RRT∗ algo-
rithm [Karaman and Frazzoli, 2010]. We claim without argu-
ment that the cost functions and obstacle placements used in
the simulation studies satisfy the restrictions.
Assumption 1. (Additivity of the objective functions) For a
path constructed by composing two other paths (to create a
discontinuous path), ∀k ∈ K,σ1, σ2 ∈ Xfree, ck(σ1 ◦ σ2) =
ck(σ1) + ck(σ2).

Reference trees Subproblem tree

Figure 3: The dependency of the trees in MORRF∗.

Assumption 2. (Continuity of the cost functions) For all k ∈
K, the cost function ck is Lipschitz continuous, that is, for
all paths σ1 : [0, s1] → Xfree and σ2 : [0, s2] → Xfree ,
there exists a constant κ(k) ∈ R+ ∪ {0} such that |ck(σ1)−
ck(σ2)| ≤ κ(k) supτ∈[0,1]‖σ1(τs1)− σ2(τs2)‖.
Assumption 3. (Obstacle spacing) There exists a constant
δ ∈ R+ such that ∀x ∈ Xfree , ∃x′ ∈ Xfree such that
• the δ-ball centered at x′ lies inside Xfree ;
• x lies inside the δ-ball centered at x′.

Lemma 1. If the Utopia reference vector satisfies
∀k, σ zutopk ≤ ck(σ), then any solution of Eq. (2) is
Pareto optimal.



Proof. The proof is by contradiction. Let the weighting vec-
tor λ be arbitrary subject to ∀k λk ≥ 0, and let σ∗ = σ∗(λ)
be a solution given that weighting vector. By definition,

σ∗ = arg min
σ

max
k∈K

λk|ck(σ)− zutopk |. (3)

Assume that the path σ∗ is not Pareto optimal. Then there
exist another path σo that dominates σ∗ and the Utopia ref-
erence vector that satisfies ∀k ∈ K, zutopk ≤ ck(σ), it fol-
lows that ∀k ∈ K, zutopk ≤ ck(σo) ≤ ck(σ∗) and ∃k′ ∈
K, zutopk ≤ ck′(σo) < ck′(σ

∗). These equations imply

∀k ∈ K, λk|ck(σ∗)− zutopk | ≥ λk|ck(σo)− zutopk |;
∃k′ ∈ K, λk′ |ck′(σ∗)− zutopk | > λk′ |ck′(σo)− zutopk |;
which yields the following contradiction to Eq (3):

max
k∈K

λk|ck(σ∗)− zutopk | > max
k∈K

λk|ck(σo)− zutopk |.

Lemma 2. If σ∗ is Pareto optimal then there exists a weight-
ing vector λ, where ∀k λk ≥ 0 and

∑K
k=1 λk = 1, such that

σ∗ is a solution of Eq. (2).

Proof. This is a proof by construction over cases. When σ∗ is
Pareto optimal, there exist two cases: (a) ∃k, ck(σ∗) = zutopk

and (b) ∀k, ck(σ∗) > zutopk .
Case (a): ∃k, ck(σ∗) = zutopk

Define P (σ∗) = {j | cj(σ∗) = zutopj } and let P =

{1, . . . ,K} \ P . Define the weight vector λ as ∀k ∈
P (σ∗), λk = 1

|P | and ∀k ∈ P (σ∗), λk = 0. For these
weights, Eq. (2) returns a set of solution paths, all of which
have the same cost for the k-cost functions when k ∈ P but
different possible costs for k ∈ P . σ∗ is trivially in this set of
solution paths.

Case (b): ∀k, ck(σ∗) > zutopk

For all k, define the weights as λk = `k∑K
j=1 `j

, where `k =

1
|ck(σ∗)−zutop

k | . The Tchebycheff cost (Eq. (2)) becomes

gte(σ∗) = max
k∈K

|ck(σ∗)− zutopk |
|ck(σ∗)− zutopk |

1∑K
j=1 `j

=
1∑K
j=1 `j

Given any other path σ, we can represent the Tchebycheff
cost as follows:

gte(σ) = max
k∈K

`k∑K
j=1 `j

|ck(σ)− zutopk |

=
1∑K
j=1 `j

max
k∈K

∣∣∣∣∣1 +
ck(σ)− ck(σ∗)

ck(σ∗)− zutopk

∣∣∣∣∣
Because σ∗ is Pareto optimal, [∃k′ ∈ K, ck′(σ) > ck′(σ

∗)]∨
[∀k ∈ K, ck′(σ) = ck′(σ

∗)] for any σ. As ∀k, ck(σ∗) >

zutopk , we have ∀k, ck(σ∗) − zutopk > 0. This implies
∃k′ ∈ K, ck′ (σ)−ck′ (σ

∗)

ck′ (σ
∗)−zutop

k′
≥ 0, which, in turn, implies

that maxk∈K

∣∣∣1 + ck(σ)−ck(σ∗)
ck(σ∗)−zutop

k

∣∣∣ ≥ 1. Therefore, gte(σ) ≥
1∑K

j=1 `j
= gte(σ∗). Thus, σ∗ is a solution to Eq. (2).

By Lemma 1 and Lemma 2, we have the following:

Theorem 1. A path is Pareto optimal if and only if it is a
solution to Eq. (2) for some weight vector.

Theorem 1 implies that we can use the Tchebycheff
method to find the Pareto set for the multi-objective path-
planning problems. The next question that needs to be an-
swered is whether the subproblem tree can find the optimal
solution of its assigned subproblem.

The way that the RRT∗ algorithm works is that it incre-
mentally constructs a tree from a root position. The cost of
the path from the position of the root node to the positions
of every other node converges to the minimal possible cost
between the positions as the number of iterations approaches
infinity. We restate this as a lemma, and note that it corre-
sponds exactly to that given for Theorem 22 in [Karaman and
Frazzoli, 2010].

Lemma 3. Given Assumptions 1-3, the cost of the minimum
cost path from the root to any vertex in RRT∗ converges to the
optimal cost almost surely.

Lemma 3 and Theorem 1 imply that each reference tree
converges to the optimal path from the root to any node in the
tree, including a node arbitrarily close to the goal node. This
means that the costs returned by those trees for the path from
the start to the goal for the cost function ck converges to the
kth element of the Utopia reference vector zutop. We state
this as a lemma.

Lemma 4. Given Assumptions 1-3, the cost of the minimum
cost path from the root to any vertex in kth reference tree
converges to z∗k almost surely.

We now turn to the proof that the subproblem trees con-
verge to paths in the Pareto set. The proof of this claim re-
quires that we know zutop to compute the Tchebycheff cost
associated with the cost used in the subproblem. If we knew
that the reference trees had already converged to zutop, then
we could simply instantiate Lemma 3. Unfortunately, the ref-
erence trees are converging at the same time that the subprob-
lem trees are converging. We now address this problem.

Let ẑutop(v; i) denote the approximate Utopia reference
vector for position v on iteration i, estimated by the cost from
the root to position x from the k-reference trees. Recall that
the mth subtree attempts to generate a solution to Eq. (2) for
a given weight vector λm. Let

cSUB
m (z) = arg min

x
max
k∈K

λm,k|xk − zk| (4)

denote the cost vector in mth subproblem tree given the ref-
erence vector z and let ĉSUB

m (i, z) denote its estimation at
iteration i. A subproblem tree obtains ẑutop(v) for ver-
tex v in the reference trees and generate the corresponding
cSUB
m (v; i, ẑutop(v)). This forms a cascade structure from the

reference trees to the subproblem tree. By Lemma 4, we have
the convergence of the reference trees.

We introduce Assumption 4 to get Lemma 5.

Assumption 4. (Lipschitz continuity) cSUB
m (z) in Eq. (4)

and its estimation ĉSUB
m (i, z) are Lipschitz continuous, i.e.

‖cSUB
m (za)− cSUB

m (zb)‖ ≤ K‖za − zb‖.
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(c) Pareto set: NSGA-II (d) Pareto paths: NSGA-II
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(e) Pareto set: weighted sum (f) Pareto paths: weighted sum
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(g) Pareto set: Tchebycheff (h) Pareto paths: Tchebycheff

Figure 4: Path planning with two objectives.

Lemma 5. Given Assumptions 1-4 , the cost of the solution
of mth subproblem tree converges to the corresponding cost
of the mth subproblem c∗m almost surely.

Proof. By Lemma 4, we have limj→∞‖z∗ − ẑ(j)‖ =
0. By Lemma 3, we have limi→∞ ĉ(i, ẑ(j)) = c(ẑ(j)).
Thus, limi→∞‖c(z∗) − ĉ(i, ẑ(j))‖ = ‖limi→∞ c(z

∗) −
limi→∞ ĉ(i, ẑ(j))‖ = ‖c(z∗)− c(ẑ(j))‖.

Since c(z) and ĉ(i, z) are Lipschitz continuous;
limi→∞‖c(z∗)− ĉ(i, ẑ(j))‖ ≤ K‖z∗ − ẑ(j)‖. As j →∞,
we have ẑ(j)→ z∗, thus limi→∞‖c(z∗)− ĉ(i, ẑ(j))‖ → 0.
This implies P ({limi→∞

j→∞
cSUB
m (i, ẑ(j)) = c∗m}) = 1.

Now, we can prove that the solution from MORRF∗ almost
surely converges to a subset of the Pareto optimal set.

Theorem 2. Given Assumptions 1-4 , the solution generated
by MORRF∗ converges to a subset of the Pareto optimal set
almost surely.

5 Simulation
We now present a series of simulation studies that provide ev-
idence that MORRF∗ produces a representative set of samples
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(c) Pareto set: weighted sum
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(d) Pareto set: Tchebycheff

Figure 5: Path planning with two objectives and an obstacle.

from the Pareto set. Results from MORRF∗ are obtained for
path-planning problems with two objectives and three objec-
tives, and are compared to a modified version of the NSGA-
II multi-objective path-planning algorithm [Ahmed and Deb,
2013] as well as a variant of MORRF∗ that uses a weighted
sum rather than the Tchebycheff approach. NSGA-II was se-
lected because evidence suggests that it provides more uni-
form samples from the Pareto set than other approaches [Deb
et al., 2002]. We modified the NSGA-II algorithm for this
problem to use paths as inputs, represented by a series of
waypoints connected by line segments; the cost calculation
is identical with that in MORRF∗, calling LINE(x1, x2) to
calculate the cost between two way points x1 and x2. The
weighted sum approach was chosen because evidence sug-
gests that it works well only when all the objectives are
convex [Zhang and Li, 2007] whereas the Tchebycheff ap-
proach should bring better diversity in the solutions [Zhang
and Li, 2007]. The weighted sum approach uses the same
sampling method for weights as that used to generate the λi
in MORRF∗. Each method was run for 5000 iterations and
restricted to 30 solutions.

The first simulation study compares three algorithms in an
obstacle-free world with two objectives: minimize Euclidean
distance, see Figure 4a, and minimize a cost function, see
Figure 4b. The first thing to note is that the convergence of
NSGA-II-based path-planning is very slow. This is indicated
in Figures 4c-4d, which show the approximation to the Pareto
set and corresponding paths, respectively, after 5000 itera-
tions; observe how the quality of the paths and sampling of
the Pareto set is uneven and unsatisfactory. By contrast, the
weighted sum approach returns a set of high-quality solutions
close to the Pareto optimal set, see Figures 4e and 4f; Finally,
note the somewhat uneven clustering of solutions on Pareto
front for MORRF∗ using weighted sum, and compare this to
the slightly more uniform clustering of MORRF∗ using the
Tchebycheff approach in Figures 4g-4h.

We therefore compared results for the two approaches for
an environment with obstacles, omitting results for NSGA-
II because convergence is so slow. The results are shown in
Figure 5. As before, observe that the Tchebycheff approach
yields a more uniform sampling, albeit one that appears to be



(a) Distance (b) Cost 1 (c) Cost 2

Object ive 1

450
500

550
600

650
700

750
800

Object ive 2200 250 300 350 400 450 500

O
b

je
ct

iv
e

 3

300

350

400

450

500

550

600

(d) Pareto set: weighted sum

Object ive 1

400450500550
600

650
700

750
800

850 Object ive 2
250

300
350

400
450

500

O
b

je
ct

iv
e

 3

300

350

400

450

500

550

600

(e) Pareto set: Tchebycheff

Figure 6: Path planning with three objectives.

somewhat noisy approximation to the Pareto set.
Finally, we evaluated how MORRF∗ performs three ob-

jectives: Euclidean distance and the two other objectives are
shown in Figures 6a-6c. As shown in Figure 6, the Pareto
front uses the Utopia reference vector (Green point) to better
approximate the Pareto set than the weighted sum approach.

6 Summary and Future Work
This paper presented the MORRF∗ algorithm for the multi-
objective path-planning problems on continuous spaces. The
algorithm blends principles from the RRT∗ algorithm with
principles from multi-objective optimization to produce an
algorithm that provides a reasonable approximation of the
Pareto set, outperforms a common multi-objective optimiza-
tion problem on a path-planning problem, and has guaranteed
best-case performance.

Future work should extend the algorithm to include not
only the weighted sum and Tchebycheff approach but also the
boundary intersection approach, which results from [Zhang
and Li, 2007] suggest might have even better diversity.
MORRF∗ could also be made more efficient by, for example,
using prior information to improve the set of sample points.

Another area of future work is to combine MORRF∗ with
Bellman’s principle of optimality. This could be done by set-
ting a goal position as the root node in the algorithm and
then generating a set of Pareto optimal paths. The algorithm
should then converge to the set of Pareto optimal from any
vertex in the tree to the goal.
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