
Informative Path Planning with a Human Path
Constraint

Daqign Yi, Michael A. Goodrich and Kevin D. Seppi
Department of Computer Science

Brigham Young University
Provo, Utah 84604

Email: daqing.yi@byu.edu, {mike, kseppi}@cs.byu.edu

Abstract—One way for a human and a robot to collaborate on
a search task is for the human to specify constraints on the robot’s
path and then allow the robot to find an optimal path subject to
these constraints. This paper presents an anytime solution to the
robot’s path-planning problem when the human specifies a path
constraint and an acceptable amount of deviation from this path.
The robot’s objective is to maximize information gathered during
the search subject to this constraint. We first discretize the path
constraint and then convert the resulting problem into a multi-
partite graph. Information maximization becomes a submodular
orienteering problem on this topology structure. Backtracking is
used to generate an efficient heuristic for solving this problem,
and an expanding tree is used to facilitate an anytime algorithm.

I. INTRODUCTION

In problems that require searching for an object of interest,
robots can make human efforts more effective because robots
can be more robust to environmental contamination and can
sense things beyond of human capabilities. Designing the in-
teractions between a human and a robot for search is no longer
constrained to Sheridan’s levels of autonomy [1]. Alternatives
to Sheridan’s levels for a search task include interactions where
the human manages the robot either by shaping the information
used by the robot to make decisions [2] or by imposing
constraints on robot and then allowing the robot to flexibly
plan within those constraints [2, 3, 4].

In this paper, we consider constraint-based interactions
between a human and a robot for a search task. Rather than
consider constraints like no-fly zones or strict waypoints, we
explore path constraints imposed by the human and then allow
the robot to deviate from the path within some specified
tolerance. The source of these constraints range from the robot
operating as a “wingman”, to a co-located human searcher, to
a human telling the robot to approximate the shortest path
to an object of interest while gathering maximal information.
Furthermore, we assume that the robot’s path-planner operates
on a discretized representation of the environment and that the
robot’s sensor footprint covers multiple cells in the discrete
representation. Finally, we assume that the robot’s sensor
becomes less accurate as the distance between the robot and
an object of interest grows. These assumptions make the path-
planning problem a constrained version of the submodular
orienteering problem on a graph.

This paper presents an anytime approximate solution to
this problem that uses backtracking to generate an efficient

heuristic and an expanding tree. Section III shows how a multi-
partite graph is generated using the human-path constraint and
formulates the problem into a class of submodular orienteering
on a multi-partite graph. Section IV describes the algorithm in
the context of solving the submodular orienteering problem
and presents a proof that the algorithm will always find the
optimal solution, given enough time. Section V introduces a
robot wingman problem to demonstrate the performance and
efficiency of the algorithm.

II. RELATED WORK

By modeling the objective of a search task using infor-
mation measurement, previous work has focused on planning
a path for a robot to maximize information gained in a
reasonable time, especially in a large problem spaces. In a
continuous space, a rapidly-exploring random tree can solve
the information maximization path planning problem, and
also shows good efficiency in an online optimization [5]. If
there exists a temporal logical constraint, a receding horizon
planning can be used [6].

If the robot’s observation model is a coverage instead of a
point, the objective of the path planning becomes maximum
coverage. Maximum coverage is a classic NP-hard combi-
natorial optimization problem [7], which includes unignor-
able overlaps. The total information of a set of observation
coverages is measured by mutual information, which implies
a property of “nondecreasing submodularity” [8]. A greedy
approximation with known performance bound can efficiently
exploit the submodularity property of mutual information [8].
A branch and bound approach can also be used in informative
path planning [9].

Maximizing the reward collected from a limited-length
graph walk is usually known as an orienteering problem [10],
in which the total reward is a summation of the rewards
of visited vertices. If the reward function of a vertex has
submodularity as in a maximum coverage problem, the problem
is defined as a submodular orienteering problem [11]. Un-
fortunately in the submodular orienteering case the location
of the robot at time t constrains the reachable locations at
time t + 1. Thus, naı̈vely applying a greedy algorithm to
the submodular orienteering case, that is, with a “teleport”
assumption, yields poor results [12]. For a generalization of
the submodular orienteering problem in which the neighboring
constraint can be converted into a time budget, a recursive
greedy algorithm can be applied [11].

III. PROBLEM STATEMENT

In this section we convert a human-path constraint into a
multi-partite graph and formulate the informative path planning
problem into a class of submodular orienteering on a multi-
partite graph.

A. Information maximization path planning

Consider a discretized map of the world formed by a set of
cells S and suppose that the robot moves with constant speed
from a cell to its neighbors. In the search task, each cell in a
discretized map is assigned an entropy value to represent the
information distribution. Because the robot’s path must be con-
nected, the robot’s motion is constrained by a graph topology
determined by the cell neighborhood. In a period of time of
length T , we denote the robot’s path as X = [x1, x2, · · · , xT],
and note that this path must satisfy the connection constraint on
the discretized map. We adopt an observation coverage model
for the robot, which means that the robot can observe not
only the cell it currently occupies but also neighboring cells
within a given range. Let the observation at time step t be OXt ,
which describes both the observed cells and how well they are
observed. Thus the robot’s path, X , induces a sequence of
observations OX = {OX1 , · · · , OXT−1, O

X
T }.

We assume that the observation coverage model follows
Bayes rule. Thus we can define the information gain of the
robot using mutual information I(S | OX) = H(S) −
H(S,OX). The entropy reduction over the problem space S
by the observation OX is the information gain to the robot.

B. Human path constraint

Fig. 1. How the multi-partite graph is obtained.

As discussed in the introduction, there are several ways
that a human can constrain the robot’s path. Without loss of
generality, we adopt a “wingman” approach and assume we
have a model that can predict the human’s path. We denote
the human’s T -step path as Y h = [yh1 , y

h
2 , · · · , yhT]. We define

a neighbor function N() that represents the assumption from
the introduction that the robot can deviate from a constrained
path by no more than a given tolerance. At each time step, this
neighborhood induces the set of visitable cells for the robot,
which is denoted by N(yht). Figure 1 gives an example. By
organizing the set of visitable cells at time t into a partition of
vertices, we can construct a multi-partite graph G = (V,E, T)
from the constrained path. A partition V (t) ∈ V is obtained
from the cells in N(yht). The edge set E is determined by the
neighborhood of each cell from the discretized map.

Imposing the path constraint Y h, we define the multi-
partite graph as follows. Figure 2 illustrates how the path
constraint induces the multi-partite graph for a notional human

path. Note that a cell in the discretized map might appear in
multiple partitions due to overlaps between sets by N(yht) at
different t.

Fig. 2. A multi-partite graph from a human path constraint.

Definition 1 (Multi-Partite Graph). The multi-partite graph
G = (V,E, T) is defined as a graph of T partitions. The
vertex set V is defined as V = ∪Tt=1V (t). Each partition V (t)
is a set of vertices vit, where t indicates which partition the
vertex x is in and i indicates the index of this vertex. Edges
are directed, originating from vertices in set V (t) to vertices
in set V (t+1). Let vit ∈ V (t) and vjt+1 ∈ V (t+1). A directed
edge (vit, v

j
t+1) connects vertices vit and vjt+1.

In order to guarantee that the search process on a multi-
partite graph G = (V,E, T) always ends with a path of length
T , we use a pruning process to ensure that each vertex can
be reached from the previous partition and is connected to
a vertex in the next partition. The pruning process includes a
forward pruning and a backward pruning. The forward pruning
traverses from partition V (2) to partition V (T) and removes
any vertex that has no incoming edge; all edges incident to
this vertex are also removed. The backward pruning traverses
from partition V (T − 1) to partition V (1), and removes any
vertex that has no outgoing edge; all edges incident to this
vertex are also removed.

C. The Optimization Problem Model

Without loss of generality, we assume all paths start from
the same vertex. Thus, we have only one vertex in partition
V (1), as illustrated in Figure 2. Because the objective of the
path-planning problem is to maximize mutual information,
and because mutual information is a submodular function [8],
we find it convenient to shift from the bulky notation for
mutual information, I(S;OX), to the more concise notation
of a general submodular function, f(X). Because the mutual
information I(S;OX) is independent of the sequence of the
vertices in a path, we write X as a set in f() for simplicity. f()
supports multiple vertices representing the same cell, which
is like choosing same position multiple times in a sensor
coverage placement problem.

The objective of the search task is to maximize information
gain subject to the path constraint. Since the path constraint is
encoded as the multi-partite graph, we can restate the objective
as maximizing information gain on the multi-partite graph.
This yields a submodular orienteering problem on a multi-
partite graph G = (V,E, T), which is given as

Objective :X∗ = argmax
X

f(X);

Constraint :|X| = T, xt ∈ V (t), (xt, xt+1) ∈ E.
(1)

Exhaustive search could find the optimal path but the time-
complexity of such a search makes this unacceptable in all
problems except in small problems. A greedy search is efficient
but the performance of greedy search on a submodular problem
is not guaranteed given a topological constraint [12]. Instead
of a greedy heuristic, we develop an alternative heuristic based
on the property of mutual information.

Mutual information has two desirable properties that
we exploit. First, it is independent of the sequence
of vertices on a path and, second, it follows a chain
rule. This chain rule property can be written as
f(x1, x2, · · · , xT) = f(x1) + f(x2 | x1) + · · · + f(xT |
x1, · · · , xT−1), which yields a structured Bellman-like
equation x̂t = argmaxXt [f(xt | x1, · · · , xt−1) +
maxXt+1,··· ,XT

f(xt+1, · · · , xT | x1, · · · , xt)]. These
structures lead to two key terms: maximum future reward and
maximum total reward.

Definition 2 (Maximum Future Reward). Define the maxi-
mum future reward as

h(x1, · · · , xt′) = max
V (t′+1),··· ,V (T)

f(xt′+1, · · ·xT | x1, · · · , xt′),

given the topology constraint ∀τ ∈ {t′+1, · · · , T}, xτ ∈ V (τ)
and ∀τ ∈ {t′ + 2, · · · , T − 1}, (xτ−1, xτ) ∈ E.

Definition 3 (Maximum Total Reward). Define the maximum
total reward from choosing xt after x1 · · · , xt′ have been
chosen as, ∀t > t′,

u(xt | x1, · · · , xt′) = f(xt | x1, · · · , xt′) + h(x1, · · · , xt′ , xt).

If we could obtain the values u(xt | x1, · · · , xt′), then
we could greedily chose values for x̂t as those that maximize
u() ; this would yield an optimal solution as x̂t → xt.
Unfortunately, the calculation on u(xt | x1, · · · , xt′) is hard
due to the submodularity of f() and the topology constraint.
In the next section, we present a heuristic for u() that yields
good performance in empirical studies.

IV. APPROXIMATE ANYTIME SOLUTION

In this section, we use backtracking to estimate the maxi-
mum total reward and use this estimate as our search heuristic.
We then use an expanding tree to create an anytime algorithm
approximate solution to the submodular orienteering problem
on the multi-partite graph.

A. Using the Search Heuristic from Backtracking

In a graph search process, if a sub-path {v1, · · · , vt′} has
been visited, we can use the following property to approximate
the maximum future reward.

Property 1.

h(x1, · · ·xt′) = max
xt′+1∈V (t′+1)∧(vt′ ,xt′+1)∈E

u(xt′+1 | x1, · · ·xt′).

Property 1 implies that the maximum future reward at
partition V (t) can be estimated from the maximum total
reward at partition V (t+1). This means that the maximum total
rewards could be estimated by using a backtracking process.
We propose a backtracking process in Algorithm 1.

Algorithm 1 BT({v1, · · · , vt′}, G) - Backtracking
Input: a sub-path {v1, · · · , vt′}, and multi-partite graph G =

(V,E, T)
Output: û(v1, · · · , vt′ , vt′+1),∀vt′+1 ∈ V (t′ + 1)

1: for t = T : −1 : t′ + 1 do
2: for vt ∈ V (t) do
3: if t == T then
4: û(vT | v1, · · · , vt′) = f(vT | v1, · · · , vt′)
5: else
6: ĥ(v1, · · · , vt′ , vt) =

maxxt+1∈V (t+1)∧(vt,xt+1)∈E û(xt+1 | v1, · · · , vt′)
7: û(vt | v1, · · · , vt′) = f(vt | v1, · · · , vt′) +

ĥ(v1, · · · , vt′ , vt)
8: end if
9: end for

10: end for
11: return û(v1, · · · , vt′ , vt′+1),∀vt′+1 ∈ V (t′ + 1)

Algorithm 1 estimates the maximum total rewards of the
vertices in V (t′+1). The backtracking starts at partition V (T)
and goes back to V (t′+1) in order to propagate the estimated
maximum future rewards. For a vertex v(t), the maximum
future reward is estimated based on the estimated maximum
total rewards of all the connected vertices in partition V (t+1).
The estimated total reward is then obtained by adding the
estimated instant reward of v(t) with the estimated maximum
future reward of v(t). The backtracking process in Algorithm
1 satisfies Lemma 1.

Lemma 1. “Backtracking” in Algorithm 1 never underesti-
mates the maximum total reward, which means

∀t ≥ t′, û(xt | v1, · · · , vt′) ≥ u(xt | v1, · · · , vt′). (2)

Proof: The proof is given in Appendix B.

Note that Lemma 1 holds even when there are multiple
vertices in a multi-partite graph generated from same cell.
This is because the submodularity of f() is preserved and the
proof depends primarily on submodularity. However, multiple
vertices generated from same cell in a path increase the degree
to which the reward is overestimated.

B. Expanding Tree Search

Since the heuristic is not guaranteed to produce an optimal
solution, we create an anytime algorithm that allows us to
continue the search process until a time limit is exceeded or
the search is completed exhaustively. In order to track the
anytime search process, the algorithm uses an expanding tree.
The expanding tree is the tree produced by repeated depth-first
traversals of the multi-partite graph [13].

Definition 4 (Expanding Tree). An expanding tree GT =
(N,L, T) obtained from a multi-partite graph G = (V,E, T)
is the tree produced by a depth first traversal of G. T is
the depth of the tree, which is determined by the number of
partitions in a multi-partite graph G. N is the node set. Each
n
i(j)
t ∈ N indicates the relevant vertex in the multi-partite

graph G, in which t shows the index of the time partition, i
shows the index of the corresponding vertex from within that

partition and (j) shows the index of a vertex in V (t − 1)
that has an out edge to vertex i. L is the directed link set.
(n
i(k)
t , n

j(i)
t+1) ∈ L is determined by (vit, v

j
t+1) ∈ E.

We assign the type to each node, which are New (a node has
been created but not expanded), Expanded (a node that has all
child nodes created) and Frozen (a node that has been created
but will not be expanded). Each path in an expanding tree is
derived from a unique depth-first traversal of the corresponding
mutli-partite graph. We use v(nj(i)t+1) to denote a vertex mapped
from a node. For a node ni(j)t , we use path(ni(j)t) to denote
the implicit path from the start position to the corresponding
vertex of the multi-partite graph, the cardinality of which is t.

We can now present Algorithm 2 for a single search
iteration. It is used as one run in the anytime framework.

Algorithm 2 NERB(nt′ , G,GT) - Node Expanding with
Recursive Backtracking
Input: Expanding Node nt′ , Multi-partite graph G =

(V,E, T), Expanding tree GT = (N,L, T)
Output: solution of a complete path

1: solution = path(nt′)
2: for t = t′ : 1 : T − 1 do
3: Create all child(nt′) = {nt′+1 | v(nt′+1) ∈ V (t′+1)∧

(v(nt′), v(nt′+1)) ∈ E}
4: Add child(nt′) as the child nodes of nt′
5: nt′ .state = Expanded
6: û(vt′+1 | path(nt′)) = BT(path(nt′), G)
7: n̂t′+1 = argmaxnt′+1∈child(nt′)

û(nt′+1 | path(nt′))
8: solution = solution

⋃
{n̂t′+1}

9: end for
10: return solution

C. Adding node freeze to the expanding tree

Because Lemma 1 tells us that the backtracking process
never underestimates the maximum total reward of a node,
we can use the estimated maximum total reward of a node to
evaluate whether the node might lead to a path that returns a
bigger reward than the current best one. A node is not in a
path that has bigger reward if its estimated value is smaller
than the current best solution. We can freeze this node, which
means that we are not going to expand any of its descendant
nodes. At each iteration we find a new solution, we can call
a node freeze process to update the states of the nodes in the
expanding tree. This process is given in Algorithm 3.

Algorithm 3 NF(GT , θ
∗) - Node Freeze

Input: an expanding tree GT = (N,L, T), the reward of
found maximum reward path θ∗

1: for nt ∈ N and nt.state == New do
2: if f(path(nt)) + ĥ(path(nt)) ≤ θ∗ then
3: nt.state = Frozen
4: end if
5: end for

Algorithm 4 combines Algorithm 1, Algorithm 2, and
Algorithm 3 to yield the anytime algorithm. The expanding tree
starts with just a root node, which is the start vertex. When a

node is created, the state of the node is New. Expanding a node
in Algorithm 4 means creating all of its children nodes and
changing the state of this node to Expanded. When a child node
is created, the estimated maximum total reward is calculated
using Algorithm 1 and stored. Each run of Algorithm 2 returns
a complete path as a solution. When a new complete path has
been returned, the freeze process defined in Algorithm 3 is
executed by checking estimated maximum total rewards stored
in each nodes in the state of New. The next run of the search
starts from the New node nt that has the largest estimated
reward f(path(nt))+ĥ(path(nt)). Starting from this node, the
next call to Algorithm 2 generates another complete path. This
anytime algorithm stops at a pre-specified number of iterations
or when there is no New node remaining.

Algorithm 4 Anytime Algorithm Framework
Input: Expanding Tree GT = (N,L, T), and multi-partite

graph G = (V,E, T);
1: Initial expanding tree Gt(N,L, T) with v1 as root node
2: maxPath = NULL, newPath = NULL
3: n′ = GT .root
4: while n′! = NULL do
5: newPath = NERB(n′, G,GT)
6: if (f(newPath) > f(maxPath)) then
7: maxPath = newPath
8: post maxPath
9: end if

10: NF(GT , f(maxPath))
11: n′ = argmax{n|n∈N∧n.state==New}(f(path(n)) +

ĥ(path(n)))
12: end while

Algorithm 4 is optimal as shown in Theorem 1 given here.

Theorem 1. The anytime algorithm framework in Algorithm
4 can always find an optimal solution given enough time.

Proof: The proof is by contradiction and is similar in spirit
to the proof of optimality for the well-known A* algorithm.
Since Algorithm 4 keeps expanding until no New nodes
remain, as long as any node in the optimal path will never
be frozen, the search will reach the optimal terminal node.

Assume that one of the nodes n∗t in the optimal path can
be frozen. This means that f(path(n∗t) + ĥ(path(n∗t))) ≤
f(path(n′T)), in which n′T is another terminal node but not
the terminal node for the optimal path. As a result, when n′T
has been reached, it will freeze node n∗t .

However, since node n∗t is in a path to an optimal ter-
minal node, f(path(n∗t)) + h(path(n∗t)) > f(path(n′T)).
Also we have f(path(n∗t)) + ĥ(path(n∗t)) ≥ f(path(n∗t)) +
h(path(n∗t)) by Lemma 1. Thus we have f(path(n∗t)) +
ĥ(path(n∗t) > f(path(n′T)), which is a contradiction.

Therefore, a node in a path to an optimal terminal node
will never be frozen by any non-optimal terminal node.

V. AN APPLICATION TO ROBOT WINGMAN

In this section, we apply Algorithm 4 to the robot wingman
problem [14]. Let Rflank denote the flank support range, which
determines the area that a robot wingman is expected to stay

Human
observation
range

Flank
support
range

Robot
observation
range

Fig. 3. A Robot Wingman Framework.

in when a human is moving; this is illustrated in Figure 3. The
robot wingman constraint requires that ∀t, ||xt−yht || ≤ Rflank
or, equivalently, ∀t ∈ T, xt ∈ N(yht).

Consider a two-dimension search space discretized into a
world of hexagonal cells. This discretization gives a constant
distance from the center of one cell to any of its immediate
neighbors, which facilitates modeling the agent observation
range. Moreover, a hexagonal tessellation is consistent with the
assumption that we made that the robot would move at constant
speed from one cell to another; in a hexagonal tessellation, the
distances between the centers of all neighboring cells and the
current cell is constant.

The observation model of an agent uses the likelihood of
detecting an object of interest in cell i and follows Bayes rule
in updating the posterior [14]. Since we know the human’s
path, Y h, we can use the human’s observation model to predict
what the human could observe and update the prior distribution
of information to reflect this. The simulation results we present
assume that human observations have already been factored
into the prior distribution of information.

A. Performance

We simulate the use of the algorithm in a search space
in which the entropy of each cell is randomly generated.
The simulation results are aggregated from 20 runs of each
case. The parameters Rflank = 2 is used for the neighboring
function of the human path constraint and Rrobotobs = 2 is used
for the robot’s observation range.

We use a “fully expanded tree size” to measure the problem
size, which depends on the planning length and the vertex con-
nectivities. Due to the human constraint, the planning length
is determined by the human’s path length. The performance
of the heuristic is measured by the percentage of optimal at
first run, that is a percentage computed from the value obtain
in the first run of Algorithm 4 over the optimal value. High
values of this metric indicate that the heuristic is useful. The
greedy heuristic [8], which chooses the maximum next step, is
imported to compare with the backtracking heuristic. Figure 4
shows the comparison between two types of heuristic on the
percentages of the optimal as a function of different planning
lengths. We can see that the performance of the backtracking
heuristic significantly surpasses that of the greedy heuristic.

Naturally, as the size of the search space expands, the
difficulty in finding the optimal solution using an exhaustive
search grows. Since we want to understand how well our
anytime algorithm performs for problems that are too big
to search exhaustively, we bound the payoff for the optimal
path by using a “teleport” search in which the robot can
bounce from region to region without following a connected

Fig. 4. The performance comparison between the backtracking heuristic and
the greedy heuristic.

Fig. 5. The performance comparison between the backtracking heuristic and
the greedy heuristic in a large problem space.

path. Figure 5 shows the rewards collected using the path
produced by the backtracking heuristic normalized by the
rewards collected by the“teleport” path for large search spaces.
Again, the backtracking heuristic is much better than the
greedy solution (similarly normalized).

We use percentage of nodes explored to indicate the effi-
ciency of the anytime algorithm framework. In particular, we
are interested in whether freezing nodes improves search effi-
ciency. Figure 6 shows that the percentage of nodes explored
decreases significantly when the problem size is expanded.
Since the anytime algorithm becomes an exhaustive search in
the absence of freezing nodes (and hence follows the size of
the search space in the figure), this figure indicates that the
percentage of nodes expanded is significantly decreased by
freezing nodes. In the anytime algorithm, the exploration might
not stop when the optimal is found, due to the existence of
overestimation. If current best of a search can reach the optimal
very quickly, it means that a best solution found in a fixed
time has high probability of being optimal. We use percentage
of runs reaching the optimal to measure this optimal search

Fig. 6. Problem size and exploration ration with different planning lengths.

Fig. 7. Percentages of optimal at first iteration and Percentage of runs
reaching the optimal with different planning lengths.

Fig. 8. Performance in different types of environments.

capability of Algorithm 4. Figure 7 illustrates that the anytime
algorithm can find the optimal solution relatively quickly.

B. Robustness

We extend the search environment from random to uni-
form and multimodal. Uniform indicates that the entropies
in different cells are identical, and multimodal indicates that
the entropy distribution among cells is a multi-modal spatial
distribution. Figure 8 shows that Algorithm 4 consistently
performs well in different types of search environment.

In order to illustrate how well Algorithm 4 adapts to
different human path constraints, we introduce five common
patterns of paths executed by a human in a search task,
which are line, spiral, lawn-mower, arc and loitering. Figure
9 shows examples on these five patterns. Due to the wingman
constraint, different human paths lead to different problem
sizes and different ratios of overlap in the coverage at two
different time steps. For this comparison we hold the number
of time steps fixed at 11 over different patterns as in Figure 9.

Figure 10 shows that the problem size varies significantly
depending on the type of path, though the planning length is
identical. Interestingly, Algorithm 4 shows better efficiency in
larger problem size. In Figure 11, we can see that the ratios of
explored nodes are relatively smaller in the patterns of “spiral”,
“lawn-mower” and “loitering”, in which the problem sizes are
relatively larger in Figure 10. We can see that the percentage

(a) Line (b) Spiral (c) Lawn-
mower

(d) Arc (e)
Loitering

Fig. 9. Different patterns of human path.

Fig. 10. Problem size in different patterns of human paths.

Fig. 11. Exploration ratios in different patterns of human paths.

of optimal at first run are all close to the optimum in all
the patterns in Figure 12, which implies the goodness of the
backtracking heuristic.

VI. SUMMARY

In this paper, we use a human path to form a path constraint
and seek to maximize the information gathered by a robot
gathered in a search task. The resulting information maximiza-
tion path planning is identified as a constrained submodular
orienteering problem on a multi-partite graph. We present an
anytime algorithm that used a planning heuristic based on
backtracking to efficiently find a high quality path. We use a
node freeze process to avoid an exhaustive search, yet we prove
that this process always preserves the ability of the algorithm
to find an optimal solution. We have also shown empirically
that this approach substantially reduces the complexity of the
resulting search.

REFERENCES

[1] T. B. Sheridan and W. L. Verplank, “Human and com-
puter control of undersea teleoperators,” DTIC Docu-
ment, Tech. Rep., 1978.

Fig. 12. Percentages of optimal at first iteration in different patterns of human
paths.

[2] L. Lin and M. Goodrich, “A bayesian approach to mod-
eling lost person behaviors based on terrain features in
wilderness search andrescue,” Computational and Mathe-
matical Organization Theory, vol. 16, no. 3, pp. 300–323,
2010.

[3] S. Clark and M. Goodrich, “A hierarchical flight planner
for sensor-driven uav missions,” in 2013 IEEE RO-MAN,
Aug 2013, pp. 509–514.

[4] J. M. Bradshaw, M. Sierhuis, A. Acquisti, P. Feltovich,
R. Hoffman, R. Jeffers, D. Prescott, N. Suri, A. Uszok,
and R. V. Hoof, “Agent autonomy,” in Adjustable Auton-
omy and Human-Agent Teamwork in Practice: An Interim
Report on Space Applications, H. Hexmoor, R. Falcone,
and C. Castelfranchi, Eds. Kluwer, 2002.

[5] D. S. Levine, “Information-rich path planning under gen-
eral constraints using rapidly-exploring random trees,”
Ph.D. dissertation, MIT, 2010.

[6] A. Jones, M. Schwager, and C. Belta, “A receding horizon
algorithm for informative path planning with temporal
logic constraints,” in 2013 IEEE International Conference
on Robotics and Automation (ICRA), May 2013, pp.
5019–5024.

[7] N. Megiddo, E. Zemel, and S. L. Hakimi, “The maximum
coverage location problem,” SIAM Journal on Algebraic
Discrete Methods, vol. 4, no. 2, pp. 253–261, 1983.

[8] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser,
“Efficient informative sensing using multiple robots,” J.
Artif. Int. Res., vol. 34, no. 1, pp. 707–755, Apr. 2009.

[9] J. Binney and G. Sukhatme, “Branch and bound for
informative path planning,” in 2012 IEEE International
Conference on Robotics and Automation (ICRA), May
2012, pp. 2147–2154.

[10] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden,
“The orienteering problem: A survey,” European Journal
of Operational Research, vol. 209, no. 1, pp. 1 – 10,
2011.

[11] C. Chekuri and M. Pal, “A recursive greedy algorithm
for walks in directed graphs,” in 46th Annual IEEE
Symposium on Foundations of Computer Science, 2005.
FOCS 2005., Oct 2005, pp. 245–253.

[12] A. Krause and D. Golovin, “Submodular function max-
imization,” Tractability: Practical Approaches to Hard
Problems, vol. 3, 2012.

[13] K. Rosen, Discrete Mathematics and Its Applications.
McGraw-Hill Science, 2011.

[14] M. Goodrich and D. Yi, “Toward task-based mental
models of human-robot teaming: A bayesian approach,”
in Virtual Augmented and Mixed Reality. Designing and
Developing Augmented and Virtual Environments, ser.
Lecture Notes in Computer Science, R. Shumaker, Ed.
Springer, 2013, vol. 8021, pp. 267–276.

APPENDIX A
PROOF OF A USEFUL PROPERTY

The following property is necessary to prove Lemma 1.

Property 2.

u(xt |x1, · · · , xt′) = f(xt | X̃(xt), x1, · · · , xt′)
+ max
xt+1∈V (t+1)∧(xt,xt+1)∈E

u(xt+1 | x1, · · · , xt′), (3)

in which

X̃(xt) = arg max
V (t+1)···V (T)

f(xt+1 · · ·xT | x1, · · · , xt′) (4)

subject to the constraint

∀τ ∈ {t+ 1, · · · , T}, xτ ∈ V (τ) ∧ (xτ−1, xτ) ∈ E. (5)

Proof: By chain rule, we have u(xt | x1, · · · , xt′) =
f(X̃(xt) | x1, · · · , xt′) + f(xt | x1, · · · , xt′ , X̃(xt)). By
decomposing the constraint in (5) into xt+1 ∈ V (t +
1) ∧ (xt, xt+1) ∈ E and ∀t′′ ∈ [t + 2, T], x(t′′) ∈
V (t′′) ∧ (xt′′−1, xt′′) ∈ E, equation (4) can be f(X̃(xt) |
x1, · · · , xt′) = maxVt+1

u(xt+1 | x1, · · · , xt′) subject to the
constraint xt+1 ∈ V (t + 1) ∧ (xt, xt+1) ∈ E. Thus equation
(3) can be obtained.

APPENDIX B
PROOF OF LEMMA 1

Proof: Equation (2) can be proven using induction as
follows. We have following two propositions, corresponding
to the basis case and induction step, which are

• proposition 1 ∀xT ∈ V (T), û(xT | v1, · · · , vt′) =
u(xT | v1, · · · , vt′);

• proposition 2 If ∀xt+1 ∈ V (t + 1), û(xt+1 |
v1, · · · , vt′) ≥ u(xt+1 | v1, · · · , vt′), then ∀xt ∈
V (t), û(xt | v1, · · · , vt′) ≥ u(xt | v1, · · · , vt′).

Basis: At time T , we have u(xT | v1, · · · , vt′) = f(xT |
v1, · · · , vt′) and û(xT | v1, · · · , vt′) = f(xT | v1, · · · , vt′).
Thus proposition 1 is true.

Induction Step: The definition of u(xt | v1, · · · , vt′),
Property 2, and the definition of û(xt | v1, · · · , vt′) in
Algorithm 1, imply û(xt | v1, · · · , vt′)−u(xt | v1, · · · , vt′) =
[f(xt | v1, · · · , vt′)− f(xt | v1, · · · , vt′ , x̃t+1, · · · x̃T)] +
[maxxt+1∈V (t+1)∧(xt,xt+1)∈E û(xt+1 | v1, · · · , vt′) −
maxxt+1∈V (t+1)∧(xt,xt+1)∈E u(xt+1 | v1, · · · , vt′)]. By
submodularity, we know that f(xt | v1, · · · , vt′) − f(xt |
v1, · · · , vt′ , x̃t+1, · · · x̃T) ≥ 0.

Define the following two values

xat+1 = arg max
xt+1∈V (t+1)∧(xt,xt+1)∈E

û(xt+1 | vt′ , · · · , v1)

xbt+1 = arg max
xt+1∈V (t+1)∧(xt,xt+1)∈E

u(xt+1 | v1, · · · , vt′).

Both xat+1 and xbt+1 belong to the set of vertices that
satisfy the constraint xt+1 ∈ V (t + 1) ∧ (xt, xt+1) ∈
E. Since xat+1 is the answer to argmax û(·), we have
û(xat+1 | v1, · · · , vt′) ≥ û(xbt+1 | v1, · · · , vt′). By the
induction hypothesis, û(xbt+1 | v1, · · · , vt′) ≥ u(xbt+1 |
v1, · · · , vt′). By transitivity, we have û(xat+1 | v1, · · · , vt′) ≥
u(xbt+1 | v1, · · · , vt′). By the definitions xat+1 and xbt+1, which
equals to maxxt+1∈V (t+1)∧(xt,xt+1)∈E û(xt+1 | v1, · · · , vt′)−
maxxt+1∈V (t+1)∧(xt,xt+1)∈E u(xt+1 | v1, · · · , vt′) ≥ 0. Thus
proposition 2 is true.

Conclusion: Since the basis case and induction step are
true, Equation (2) follows.

