Informative Path Planning with a Human Path Constraint

Daqing Yi Michael A. Goodrich Kevin D. Seppi

Department of Computer Science
Brigham Young University
Outline

Structure

1. **Introduction**
2. **Problem definition**
 - Informative path
 - Human constraint
 - The optimization model
3. **Solution**
 - Hardness of problem
 - Backtracking heuristic
 - Anytime algorithm design
4. **Simulation**
 - Robot wingman
 - Results
5. **Summary and future work**
Human-robot collaboration

Introduction

Human

Robot

Human

Autonomous

Robot

Human

Human-robot interaction

Human-robot collaboration
Cordon and search

Introduction
Coverage model
Informative path

- Information measurement - entropy
- Maximum coverage problem
Submodularity

Informative path

\[f(A) + f(B) \geq f(A + B) \]

Information

- search space \(S \)
- the observation of a robot \(O^X \)
- the observation of a human \(O^Y \)

\[f(S, O^X) + f(S, O^{Yh}) \geq f(S, O^X, O^{Yh}) \]
Submodular orienteering
Informative path

Conditional mutual information

\[I(S; O^X \mid O^{Y^h}) = H(S \mid O^{Y^h}) - H(S \mid O^X, O^{Y^h}) \]

- Entropy reduction
- Submodularity
- Chain rule

\[I(S; O^X \mid O^{Y^h}) = \sum_{t=1}^{T} I(O_t^X; S \mid O_1^X, \cdots, O_{t-1}^X, O^{Y^h}) \]
Team role
Human constraint

- cooperative observation
- assistance and protection
Neighboring function
Human constraint

- human path \(\{y^h_1 \cdots y^h_T\} \)
- neighboring function \(N(y^h_T) \)

\[y^h_{t+1} \]
\[N(y^h_{t+1}) \]
\[y^h_t \]
\[N(y^h_t) \]
\[y^h_{t-1} \]
\[N(y^h_{t-1}) \]
Problem abstraction

The optimization model

Urban map

Topology graph

Multi-partite graph

Human path
The multi-partite graph

The optimization model

- time-space synchronization
- connection determined by discretized map
A pruning process
The optimization model

Reachable

Forward pruning
\[\forall t \in \{2, \cdots T\}, \forall v \in V(t), \text{deg}^-(v) > 0 \]

Non-terminating

Backward pruning
\[\forall t \in \{1, \cdots T - 1\}, \forall v \in V(t), \text{deg}^+(v) > 0 \]
Obstacles
The optimization model
Submodular orienteering on a multi-partite graph
The optimization problem

Objective: $X^* = \arg \max_X f(X)$;

Constraint: $|X| = T$, $x_t \in V(t), (x_t, x_{t+1}) \in E$.
Bellman-like equation

Heuristic

\[
\hat{x}_t = \arg \max_{X_t} f(x_t \mid x_1, \ldots, x_{t-1}) + \max_{X_{t+1}, \ldots, X_T} f(x_{t+1}, \ldots, x_T \mid x_1, \ldots, x_t)
\]
Backtracking
Heuristic

\[f(v^1_v, v^2_v, v^3_v) \rightarrow h(v^1_v, v^2_v, v^3_v) \]

- point model → true max total reward
- coverage model → estimated max total reward guarantee
Expanding tree
Anytime algorithm framework

- Exhaustive enumeration
 - depth-first recursive traverse
 - node \iff subpath

- node in an expanding tree
- vertex in a multi-partite graph
Estimated reward \leq Current best reward \implies Stop exploring subpath

\[f(path(n_3^{(1)})) + \hat{h}(n_3^{(1)}) \leq f(path(n_5^{(1)})) \]

\[f(path(n_4^{(1)})) \leq f(path(n_4^{(1)})) \]

\[f(path(n_4^{(2)})) + \hat{h}(n_4^{(2)}) \leq f(path(n_5^{(1)})) \]
Flow
Anytime algorithm framework

Start -> Recursive Backtracking -> Generate Solution

Tree Expanding <- Recursive Backtracking

Node Frozen <- Recursive Backtracking

Stop? (Yes/No) -> End

Solution
Lemma

Backtracking in Algorithm 1 never \textit{underestimates} the maximum total reward, which means

\[\forall t \geq t', \hat{u}(x_t \mid v_1, \cdots, v_{t'}) \geq u(x_t \mid v_1, \cdots, v_{t'}). \]

Theorem

The anytime algorithm framework in Algorithm 4 can always find an \textit{optimal} solution given enough time.
A robot Wingman problem

Robot Wingman
Labelling
Robot wingman

Gazebo world

Map

Labeling
Path planning
Robot wingman

Path planning
Waypoints
Robot execution
Problem size
\[\text{nodeNum(} \text{fully expanding tree} \text{)} \]

Percentage of nodes explored
\[\frac{\text{nodeNum(} \text{current expanding tree} \text{)}}{\text{nodeNum(} \text{fully expanding tree} \text{)}} \]

Percentage of optimal at first iteration
\[\frac{\text{score(} \text{first found solution} \text{)}}{\text{score(} \text{optimal solution} \text{)}} \]

Number of iterations to reach optimal (normalized)
\[\frac{\text{iterationCount(} \text{optimal found} \text{)}}{\text{iterationCount(} \text{finish tree expanding} \text{)}} \]
Results

Metrics

Quality of heuristic
- Percentage of optimal at first iteration

Quality of algorithm
- Number of iterations to reach optimal (normalized)

![Graph showing metrics](image)
Performance

Results

average on the results of 20 runs @ random pattern

Problem size

Percentage of nodes explored

Percentage of optimal at first iteration

Number of iterations to reach optimal (normalized)
Information pattern difference
Robustness

Uniform
Random
Multi-Modal

Percentage of optimal at first iteration (%)

Percentage of nodes explored (%)

Percentage of optimal at first iteration
Human path difference

Robustness

- Line
- Spiral
- Lawn mower
- Arc
- Loitering
Human path difference

Robustness

Problem size

Percentage of nodes explored

Percentage of optimal at first iteration
Summary

- Search space reduction by **human constraint**
- Effectiveness and efficiency of **backtracking** on a multi-partite graph

Futurework

- Efficiency increase \rightarrow Over-estimation reduction
- Offline planning \rightarrow Online planning
- Single objective \rightarrow Multiple objectives
Thank you!